Author:
Athar Muhammad,Fetecau Corina,Kamran Muhammad,Sohail Ahmad,Imran Muhammad
Abstract
The velocity field and the adequate shear stress corresponding to the flow of a fractional Maxwell fluid (FMF) between two infinite coaxial cylinders, are determined by means of the Laplace and finite Hankel transforms. The motion is produced by the inner cylinder that at time t = 0+ applies a shear stress fta (a ≥ 0) to the fluid. The solutions that have been obtained, presented under series form in terms of the generalized G and R functions, satisfy all imposed initial and boundary conditions. Similar solutions for ordinary Maxwell and Newtonian fluids are obtained as special cases of general solutions. The unsteady solutions corresponding to a = 1, 2, 3, ... can be written as simple or multiple integrals of similar solutions for a = 0 and we extend this for any positive real number a expressing in fractional integration. Furthermore, for a = 0, 1 and 2, the solutions corresponding to Maxwell fluid compared graphically with the solutions obtained in [1–3], earlier by a different technique. For a = 0 and 1 the unsteady motion of a Maxwell fluid, as well as that of a Newtonian fluid ultimately becomes steady and the required time to reach the steady-state is graphically established. Finally a comparison between the motions of FMF and Maxwell fluid is underlined by graphical illustrations.
Subject
Applied Mathematics,Analysis
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献