Exact solutions for unsteady axial Couette flow of a fractional Maxwell fluid due to an accelerated shear

Author:

Athar Muhammad,Fetecau Corina,Kamran Muhammad,Sohail Ahmad,Imran Muhammad

Abstract

The velocity field and the adequate shear stress corresponding to the flow of a fractional Maxwell fluid (FMF) between two infinite coaxial cylinders, are determined by means of the Laplace and finite Hankel transforms. The motion is produced by the inner cylinder that at time t = 0+ applies a shear stress fta (a ≥ 0) to the fluid. The solutions that have been obtained, presented under series form in terms of the generalized G and R functions, satisfy all imposed initial and boundary conditions. Similar solutions for ordinary Maxwell and Newtonian fluids are obtained as special cases of general solutions. The unsteady solutions corresponding to a = 1, 2, 3, ... can be written as simple or multiple integrals of similar solutions for a = 0 and we extend this for any positive real number a expressing in fractional integration. Furthermore, for a = 0, 1 and 2, the solutions corresponding to Maxwell fluid compared graphically with the solutions obtained in [1–3], earlier by a different technique. For a = 0 and 1 the unsteady motion of a Maxwell fluid, as well as that of a Newtonian fluid ultimately becomes steady and the required time to reach the steady-state is graphically established. Finally a comparison between the motions of FMF and Maxwell fluid is underlined by graphical illustrations.

Publisher

Vilnius University Press

Subject

Applied Mathematics,Analysis

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3