A Study of Steady Buoyancy-Driven Dissipative Micropolar Free Convection Heat and Mass Transfer in a Darcian Porous Regime with Chemical Reaction

Author:

Bég O. Anwar,Bhargava R.,Rawat S.,Takhar H. S.,Bég Tasweer A.

Abstract

In the present paper we examine the steady double-diffusive free convective heat and mass transfer of a chemically-reacting micropolar fluid flowing through a Darcian porous regime adjacent to a vertical stretching plane. Viscous dissipation effects are included in the energy equation. Assuming incompressible, micro-isotropic fluid behaviour the transport equations are formulated in a two-dimensional coordinate system (x, y) using boundary-layer theory. The influence of the bulk porous medium retardation is modeled as a drag force term in the translational momentum equation. Transformations render the conservation equations into dimensionless form in terms of a single independent variable, η, transverse to the stretching surface. A simplified first order homogenous reaction model is also used to simulate chemical reaction in the flow. Using the finite element method solutions are generated for the angular velocity field, translational velocity field, temperature and species transfer fields. The effects of buoyancy, porous drag and chemical reaction rate are studied. Chemical reaction is shown to decelerate the flow and also micro-rotation values, in particular near the wall. Mass transfer is also decreased with increasing chemical reaction rate. Increasing Darcy number is shown to accelerate the flow. Applications of the study include cooling of electronic circuits, packed-bed chemical reactors and also the near field flows in radioactive waste geo-repositories.

Publisher

Vilnius University Press

Subject

Applied Mathematics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3