Modeling the uptake of fluorescent molecules into 3D cellular spheroids

Author:

Astrauskas Rokas,Ivanauskas Feliksas,Jarockytė Greta,Karabanovas Vitalijus,Rotomskis Ričardas

Abstract

Three mathematical models were developed to analyze the dynamics of fluorescent dyes penetration into 3D cellular spheroids. Two fluorescent dyes were chosen to verify mathematical models: rhodamine 6G (R6G) as a small molecule, which can freely penetrate through the cells, and wheat germ agglutinin (WGA) conjugated with Alexa488 fluorescent label, which reacts with the cells plasma membrane, and its cellular penetration is significantly lower. Dye penetration and binding to cells were modeled with nonlinear diffusion–reaction equations. System of differential equations was solved using numerical methods, and good correspondence with physical experiment was shown. Diffusion coefficients in extracellular matrix were determined for both fluorescent dyes, and the influence of reactions parameters to WGA penetration was analyzed. Dynamics of dyes accumulation into cell spheroids were also determined.

Publisher

Vilnius University Press

Subject

Applied Mathematics,Analysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3