Distribution of Terms Across Genres in the Annotated Lithuanian Cybersecurity Corpus

Author:

Rackevičienė SigitaORCID,Utka AndriusORCID,Bielinskienė AgnėORCID,Rokas AivarasORCID

Abstract

The paper provides results of the frequential distribution analysis of cybersecurity terms used in the Lithuanian cybersecurity corpus composed of texts of different genres. The research focuses on the following aspects: overall distribution of cybersecurity terms (their density and diversity) across genres, distribution of English and English-Lithuanian terms and their usage patterns in Lithuanian sentences, and, finally, the most frequent cybersecurity terms and their thematic groups in each genre. The research was performed in several stages: compilation of a cybersecurity corpus and its subdivision into genre-specific subcorpora, manual annotation of cybersecurity terms, automatic lemmatisation of annotated terms and, finally, quantitative analysis of the distribution of the terms across the subcorpora. The results reveal the similarities and differences of the use of cybersecurity terminology across genres which are important to consider to get a complete picture of terminology usage trends in this domain.

Publisher

Vilnius University Press

Subject

Literature and Literary Theory,Linguistics and Language,Language and Linguistics,Communication

Reference18 articles.

1. Bada, M., Eckert, M., Palmer, M., Hunter, L., 2010. An overview of the CRAFT concept annotation guidelines. Proceedings of the Fourth Linguistic Annotation Workshop, pp. 207-211. Available at: [Accessed 4 October 2021].

2. Biber, D., Conrad, S., Leech, G., 2002. Corpus linguistics: investigating language structure and use. Cambridge: Cambridge University Press.

3. Bielinskienė, A., Boizou, L., Grigonytė, G., Kovalevskaitė, J., Rimkutė, E., Utka, A., 2015. Lietuvių kalbos terminų automatinis atpažinimas ir apibrėžimas [Automatic extraction and definition of Lithuanian terms]. Kaunas: Vytauto Didžiojo universitetas. Available at: [Accessed 4 January 2022]. [In Lithuanian].

4. Ferraresi, A., 2019. How specialized (or popularized)? Terminological density as a clue to text specialization in the domain of food safety. Lingue Linguaggi, 29, pp. 17-39. Available at: [Accessed 18 October 2021]. https://doi.org/10.1285/i22390359v29p17.

5. Hätty, A., Schulte im Walde, S. S., 2018. Fine-grained termhood prediction for German compound terms using neural networks. Proceedings of the Joint Workshop on Lin guistic Annotation, Multiword Expressions and Constructions (LAW-MWE-CxG-2018), pp. 62-73. Available at: [Accessed 3 September 2021].

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3