Author:
Hashmi Meraj Mustafa,Hayat Tasawar,Alsaedi Ahmed
Abstract
This article investigates the magnetohydrodynamic squeezing flow of nanofluid between parallel disks. Governing partial differential equations are converted into ordinary differential system via similarity transformations. We employ homotopy analysis method (HAM) to construct analytic expressions of velocity, temperature and nanoparticles volume fraction. Convergence analysis is performed and optimal values of the convergence-control parameters are determined. The computations are validated with the built in routine for solving nonlinear boundary value problems via shooting technique through software Mathematica 8.0. The behaviors of key parameters such as suction/blowing parameter (A), squeeze parameter (S), Hartman number (M), Brownian motion parameter (Nb) and thermophoresis parameter (Nt) are thoroughly examined. It is seen that the parameters have a great impact on the concentration field for the suction flow when compared with the blowing case. An intensification in the Brownian motion and thermophoresis effects results in the appreciable increase in the temperature and nanoparticles concentration.
Subject
Applied Mathematics,Analysis
Cited by
79 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献