Regularities of Signal and Sensitivity Variation of a Reflection Fiber Optopair Sensor Dependent on the Angle between Axes of Fiber Tips

Author:

Kleiza V.,Verkelis J.

Abstract

Regularities of variation of output signal U of one reflection fiber optopair dependent on the distance h between active fiber tips and light reflecting body-mirror (U-h characteristics) and on the angle 2θ between the FAT axes, the distance between FAT being minimal (b = bmin), have been explored by modelling and experimentally. The parameters of U-h characteristics have been established: maximal sensitivity Smax(h), localization and values of maxima and inflection points (+,−) of a function U(h), length of interval ∆h in which the output signal U(h) is linear (98 % of sensitivity maxima), as well as dependences of these parameters on the angle θ and distance h. It has been shown that the experimental results are well described by the formulas improved by the authors previously. It has been demonstrated that reflection fiber optopair sensitivity Smax to displacement considerably increases with an increase of the angle θ. It has been defined that, with an increase of the angle θ up to 20°, sensitivity increases up to 30 times when active fiber tips axes are almost parallel and the diameter of the fiber core is 100 µm, and 125 µm with cladding. Apart from that, Smax increases almost exponentially up to θ = 20°. A drawback of such an RFP is that with an increase of the angle θ, the size of the sensor head also increases. However, due to their considerably increased sensitivity, they can be and are wide used.

Publisher

Vilnius University Press

Subject

Applied Mathematics,Analysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3