On the kinetics of the Langmuir-type heterogeneous reactions

Author:

Skakauskas Vladas,Katauskis Pranas

Abstract

In this paper we investigate three two-dimensional in space mathematical models of the kinetics of unimolecular heterogeneous reactions proceeding onto planar surfaces. All models include the diffusion of the reactant from a bounded vessel towards an adsorbent, adsorption of the molecules of the reactant, their desorption, conversion (reaction) of the adsorbate into a product, instantaneous product desorption, and the diffusion of the product from the adsorbent into the same vessel. One of these models is based on the Langmuir-type kinetics of the surface reactions, the other one is based on the local steady-state value of the surface coverage, and the last one, in addition to the first model, involves the diffusion of the adsorbate along the adsorbent. Diffusivity of all species is assumed to be constant. Models were solved numerically by using the finite difference technique. By changing input parameters the effects of the rate constants of the reactant adsorption, desorption, and reaction and the influence of the surface diffusion of the adsorbate and approximation of the surface coverage by its steady-state value on the kinetics of surface reactions were studied numerically.

Publisher

Vilnius University Press

Subject

Applied Mathematics,Analysis

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finite size scaling in the heterogeneous reaction 2A + B2 → 2AB;MATCH Communications in Mathematical and in Computer Chemistry;2021

2. Kinetic Modeling of Grain Boundary Diffusion: The Influence of Grain Size and Surface Processes;Materials;2020-02-26

3. Existence and Uniqueness Theorem for a Model of Bimolecular Surface Reactions;Ukrainian Mathematical Journal;2017-11-29

4. Solvability Theorem for a Mathematical Bimolecular Reaction Model;Acta Applicandae Mathematicae;2014-10-31

5. The reaction–diffusion problem with dynamical boundary condition;Nonlinear Analysis: Theory, Methods & Applications;2014-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3