Intelektinė daugiaagentė mokymosi sistema, naudojanti edukacinių duomenų tyrybą

Author:

Kurilovas Eugenijus,Meleško Jaroslav,Krikun Irina

Abstract

Straipsnyje yra pristatyta mokymosi personalizavimo pagal besimokančiųjų poreikius metodologija, kurioje yra naudojamos intelektinė daugiaagentė mokymosi sistema ir duomenų tyryba. Mokymosi personalizavimas yra įgyvendinamas remiantis keliais metodais. Felderio ir Silverman mokymosi stilių modelis naudojamas besimokančiųjų profiliams kurti, o tikimybiniai tinkamumo rodikliai yra identifikuojami tam, kad būtų galima susieti mokomuosius komponentus (t. y. mokomuosius objektus, mokomąsias veiklas ir mokymosi aplinką) su konkrečių besimokančiųjų mokymosi stiliais. Kitos pasiūlytos mokymosi sistemos kūrimo technologijos yra ontologijos, rekomendavimo sistema, intelektiniai programiniai agentai ir edukacinių duomenų tyryba (mokymosi analitika). Personalizuotais mokomaisiais moduliais čia vadinami moduliai, sudaryti iš mokomųjų komponentų, kurie turi aukščiausius tikimybinius tinkamumo rodiklius konkrečių besimokančiųjų atžvilgiu. Straipsnyje visų pirma yra atlikta intelektinių programinių agentų taikymo švietime sisteminė apžvalga „Clarivate Analytics Web of Science“ duomenų bazėje. Antra, yra aprašyti mokymosi personalizavimo metodai, taikant intelektines technologijas mokomiesiems moduliams, optimizuotiems konkretiems besimokantiesiems, kurti. Sukurti besimokančiųjų profiliai ir personalizuoti mokomieji moduliai yra toliau koreguojami duomenų tyrybos metodais ir priemonėmis. Detaliau yra pristatomas intelektinės daugiaagentės mokymosi sistemos, grįstos minėtomis technologijomis, modelis. Esminiai pasiūlytos technologijos sėkmės veiksniai yra edukologijos atžvilgiu kokybiški mokomųjų komponentų žodynai, mokomųjų komponentų ekspertinis vertinimas jų tinkamumui konkretiems besimokantiesiems įvertinti, taip pat ontologijų, rekomendavimo sistemos, intelektinių programinių agentų ir duomenų tyrybos taikymas.

Publisher

Vilnius University Press

Subject

Management of Technology and Innovation,Political Science and International Relations,Sociology and Political Science,Media Technology,Communication

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. OPTIMISING THE EDUCATIONAL PROCESS USING GRADIENT BOOSTING MACHINE: ANALYSING RESIDUAL KNOWLEDGE AND ENHANCING STUDENT PERFORMANCE;Синтез науки и образования как перспективный путь развития общества: сборник статей международной научной конференции (Петрозаводск, Март 2024);2024-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3