POROZİTE ANALİZİNE DERİN ÖĞRENME YAKLAŞIMI: U-NET İLE DİNAMİK EŞİKLEME
Author:
Ervural Saim1ORCID, Ertuş Emre Burak2ORCID, Ceran Hüseyin Furkan2ORCID
Affiliation:
1. KTO KARATAY UNIVERSITY 2. KTO KARATAY ÜNİVERSİTESİ
Abstract
Gözenekli malzemelerin porozite değerinin belirlenmesinde birçok fiziksel yöntem kullanılmaktadır ve bu yöntemler genellikle maliyetli cihazlar marifetiyle uygulanmaktadır. Ayrıca malzemelerde farklı seviyelerde (mikro, mezo ve makro) gözeneklilik bulunması kullanılacak yöntem seçimini de etkilemektedir. Bunun yanında görüntü işleme yöntemleri kullanılarak da porozite değeri hesaplanabilmekte, böylece hem zaman hem de maliyet tasarrufu sağlanabilmektedir. Bu çalışmada görüntü işleme tekniğindeki eşik belirleme aşamasında ImageJ programı kullanılarak sayısal porozitesi eşikli görüntü olarak görüntü verisine aktarılmıştır. Oluşturulan eşikli etiket verileri ile girdi SEM görüntüleri eşlenmiş ve oluşturulan veriseti veri artırma teknikleri kullanılarak genişletilmiştir. Çalışmada evrişimli sinir ağlarının özelleşmiş bir versiyonu olan U-Net mimarisi kullanılmış ve U-Net mimarisi, mikroskop görüntülerini segmentlere ayırarak gözenekli bölgeleri belirlemiş ve bu segmentlerin eşiklenmiş görüntülerine dayalı olarak gözeneklilik değerleri hesaplanmıştır. Uygulamada literatürden elde edilen gözenekli malzemelerin SEM görüntüleri kullanılmış, etiket görüntüleri olarak ise Arşimet prensibindeki porozite değerlerine göre gözenekli malzemenin ikili çıktıları manuel olarak eşiklenerek kaydedilmiştir. Çalışma sonucunda genel olarak fiziki ölçümlerle korelasyon sağlamış ve derin öğrenmeden faydalanılan dinamik eşikleme sayesinde klasik görüntü işleme yöntemlerine göre daha başarılı sonuçlar elde edilmiştir.
Publisher
Kahramanmaras Sutcu Imam University Journal of Engineering Sciences
Reference51 articles.
1. Ahn, J., Jung, J., Kim, S., & Han, S.-I. (2014). X-ray image analysis of porosity of pervious concretes. GEOMATE Journal, 6(11), 796-799. 2. Aly, A. F., Agameia, A., Eldesouky, A. S., & Sharaf, M. A. (2011). Scaffold development and characterization using CAD system. Am. J. Biomed. Sci, 3(4), 268-277. 3. Arena, E., Rueden, C., Hiner, M., Wang, S., Yuan, M., & Eliceiri, K. (2017). Quantitating the cell: turning images into numbers with ImageJ, Wiley Interdiscip. Rev. Dev. Biol., 6. 4. Barea, R., Osendi, M. I., Ferreira, J. M., & Miranzo, P. (2005). Thermal conductivity of highly porous mullite material. Acta materialia, 53(11), 3313-3318. 5. Barmala, M., Moheb, A., & Emadi, R. (2009). Applying Taguchi method for optimization of the synthesis condition of nano-porous alumina membrane by slip casting method. Journal of Alloys and Compounds, 485(1-2), 778-782.
|
|