DETECTION OF NAIL DISEASES USING ENSEMBLE MODEL BASED ON MAJORITY VOTING

Author:

YAMAÇ Senar Ali1ORCID,KUYUCUOĞLU Orhun1ORCID,KÖSEOĞLU Şeyma Begüm1ORCID,ULUKAYA Sezer1ORCID

Affiliation:

1. TRAKYA ÜNİVERSİTESİ

Abstract

Nail diseases are disorders that can have serious effects on human quality of life. With the developing computational methods and technology, anomalies on the nail may be detected quickly and in a non-invasive way. This study proposes a model that provides better performance by combining the results of different deep learning networks with the ensemble learning method. The performance of 7 different deep learning architectures was examined using a database containing 17 disease classes. The proposed method achieved 75 % accuracy, resulting in significant increases in precision and recall metrics compared to individual deep-learning architectures. Thanks to a mobile application that will be developed, the proposed model for large-scale screening may be used as an assistive decision support system for medical professionals. When the results are observed, we predict that early detection of nail diseases (in a remote way) on the hand, which is one of our most used limbs, can reduce hospital visits and costs. In addition, the proposed method can be integrated into dermatoscopy devices used for skin diseases and mole analysis.

Publisher

Kahramanmaras Sutcu Imam University Journal of Engineering Sciences

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference34 articles.

1. Abdulhadi, J., Al-Dujaili, A., Humaidi, A. J., & Fadhel, M. A. R. (2021). Human nail diseases classification based on transfer learning. ICIC Express Letters, 15(12), 1271–1282.

2. Akcan, F., & Sertbaş, A. (2021). Topluluk Öğrenmesi Yöntemleri ile Göğüs Kanseri Teşhisi. Electronic Turkish Studies, 16(2). https://doi.org/10.7827/TurkishStudies

3. Azad, M. M., Ganapathy, A., Vadlamudi, S., & Paruchuri, H. (2021). Medical diagnosis using deep learning techniques: a research survey. Annals of the Romanian Society for Cell Biology, 25(6), 5591-5600.

4. Barsha, N. A., Rahman, A., & Mahdy, M. R. C. (2021). Automated detection and grading of Invasive Ductal Carcinoma breast cancer using ensemble of deep learning models. Computers in Biology and Medicine, 139, 104931.

5. Begum, M., Dhivya, A., Krishnan, A. J., & Keerthana, S. D. (2021, June). Automated Detection of skin and nail disorders using Convolutional Neural Networks. In 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI) (pp. 1309-1316). IEEE.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3