Affiliation:
1. İSTANBUL AYDIN ÜNİVERSİTESİ
Abstract
In this study, the effect of two different wall systems which are composed of the structural lightweight concrete panel and metallic elements between the wall and frame on the behaviour of the RC frame is investigated numerically by using the Abaqus software. In the second type of wall system, a polyurethane-based binder was used between the wall and the RC beam. A quasi-static lateral loading was applied to 5 different full scale RC frames with and without walls, and frames were pushed 80mm laterally. In the worst case, the wall system carried 1.52 times the lateral load bare frame carried, whereas in the best case, the frame with the wall system carried 2.12 times the load bare frame carried. When thinner metallic elements were used, the elements yielded. This is promising for increasing damping in structures also. The second type of wall which interacts with the beam increased the initial lateral stiffness of the frame by 156% when compared with the bare frame. All frames conducted a ductile behavior and bare frame results are validated by comparing with previous study.
Publisher
Kahramanmaras Sutcu Imam University Journal of Engineering Sciences
Reference21 articles.
1. Al-Shaikh, I., & Falah, N. (2014). Numerical analysis of masonry infilled RC frames, Journal of Science and Technology, 19:2. https://doi.org/10.20428/jst.v19i2.772
2. Abdulla, K., F., Cunningham, L., S., & Gillie, M. (2017). Simulating masonry behaviour using a simplified micro model approach. Engineering Structures, 151, 349-365
3. Bai, J., & Ou, J., (2012, September). Plastic limit state design of frame structures based on the strong column weak beam failure mechanism. In 2012 15th World Conference on Earthquake Engineering. WCEE
4. Demir, C. (2012). Seismic Behaviour of Historical stone masonry. Phd Thesis. Istanbul Technical University Civil Engineering.
5. Dassault Systems Simula ABAQUS, Modelling fracture and Failure, Lecture 6