Abstract
Demiryolları insan ve yükünü taşır. Güvenli bir demiryolu seyahati için rayların kontrol edilmesi önemlidir. Raylar genelde insanlar tarafından manuel olarak kontrol edilmektedir. Gelişen teknolojiyle artık İHA'lar birçok görevde insanın yerini almaktadır. Rayların manuel olarak kontrol edilmesi zaman alıcı ve maliyetli bir iştir. Bu nedenle raylar İHA'lar tarafından kontrol edilebilir. İHA'ların rayları kontrol edebilmesi için rayların üzerinde otonom olarak uçması gerekir. Bunu yapabilmesi için ray görüntüleri üzerinde segmentasyon yapılmalıdır. Görüntü segmentasyonu bilgisayarlı görü alanında yapılan çalışmalardandır. Bu çalışmalarda derin öğrenmeden faydalanılmaktadır. Derin öğrenme tabanlı evrişimsel sinir ağlarından olan UNet, ICNet ve BiSeNet V2, bilgisayarlı görü uygulamalarında kullanılmaktadırlar. Literatürde gerçek zamanlı görüntü segmentasyonu görevlerinde kullanılan bu ağlar halka açık olarak paylaşılan Railsem19 veri seti özelleştirilerek eğitilmiştir. 1024×512 piksel çözünürlüğündeki görüntüler üzerinde %98 segmentasyon doğruluğuna ulaşan ağlar İHA ile demiryolundan alınan gerçek zamanlı görüntülerde yaklaşık 15 fps hıza ulaşmışlardır. Ağların gerçek zamanlı segmentasyon videosu https://youtu.be/piVTdsDPzfg bağlantısından izlenilebilir. Çalışmada ayrıca otonom İHA uçuşu bir PID uçuş kontrol sistemi önerilmiştir.
Funder
Bu çalışma Fırat Üniversitesi Bilimsel Araştırma Projeleri tarafından ADEP.22.02 proje numarası ile desteklenmiştir.
Publisher
Kahramanmaras Sutcu Imam University Journal of Engineering Sciences
Reference32 articles.
1. Anadolu Ajansı. (2023). Deprem tren raylarını tel gibi büktü. https://www.ntv.com.tr/galeri/turkiye/deprem-tren-raylarini-tel-gibi-buktu,j6Y22jcDNk2TPmVE60ZCoA/JUO5LUJ0SkyT_r2jLbTUWg Erişim: 17.04.2023.
2. Aydin, I., Sevi, M., Sahbaz, K., & Karakose, M. (2021). Detection of Rail Defects with Deep Learning Controlled Autonomous UAV. 2021 International Conference on Data Analytics for Business and Industry, ICDABI 2021, 500–504. https://doi.org/10.1109/ICDABI53623.2021.9655796
3. Bayati, A. M. A. (2019). Evrişimsel Sinir Ağları Kullanarak Drone Tarafından Elde Edilen Görüntülerde Nesne Tanıma. Yüksek Lisans Tezi. Selçuk Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Müh. A.B.D., Konya 72s.
4. Bojarczak, P., & Lesiak, P. (2021). UAVs in rail damage image diagnostics supported by deep-learning networks. Open Engineering, 11(1), 339–348. https://doi.org/10.1515/eng-2021-0033
5. Çakmak, V., & Altaş, A. (2018). Sosyal Medya Etkileşiminde Tren Yolculukları: DOĞU EKSPRESİ İle İlgili Youtube Paylaşım Videolarının Analizi. Journal of Tourism and Gastronomy Studies, 6(1), 390–408. https://doi.org/10.21325/jotags.2018.194