Affiliation:
1. MARDİN ARTUKLU ÜNİVERSİTESİ
2. GAZİANTEP ÜNİVERSİTESİ
Abstract
Enerji, ülkelerin en önemli uygarlık araçlarından biridir. Dünya genelinde artan nüfus, refah seviyesi ve gelişen teknoloji enerji tüketimini ciddi manada arttıran faktörlerdendir. Sürdürülebilir kalkınma çerçevesinde enerji üretiminin ve tüketiminin gerçekleştirilmesi günümüzün hiç şüphesiz en önemli hedeflerinden birisidir. Tercih edilen enerji türünün tükenebilir enerji kaynağı olması, bu enerji kaynaklarında dışa bağımlı olması ve çevresel durumlardan dolayı Türkiye’de gelecek yıllarda ne kadarlık enerjiye ihtiyaç duyulabileceğinin tahmin edilebilmesi büyük önem taşımaktadır. Bu önemli öngörüyü elde edebilmek için çalışmada, sürü zekâsı tabanlı meta-sezgisel algoritmalardan Balina Optimizasyon Algoritması (BOA) ve Yapay Arı Kolonisi Algoritması (YAK) tercih edilmiştir. Enerji tüketimini en çok etkileyen nüfus, gayri safi yurtiçi hâsıla (GSYH), ithalat ve ihracat gibi bağımsız değişkenlerin 1990-2009 yılları arasındaki veriler eğitim, 2009-2019 yılları arasındaki veriler ise test için kullanılmıştır. Elde edilen en iyi model sonuçlarına göre ise muhtemel dört senaryoda 2040 yılına kadar Türkiye’nin ihtiyaç duyabileceği enerji miktarı belirlenmeye çalışılmıştır. Bu hesaplamalara göre YAK modelinin test verileri için %86 R^2ve %8,74 MAPE (Ortalama Mutlak Yüzdesel Hata) değerleri ile BOA modeline göre daha iyi sonuç verdiği gözlenmiştir.
Publisher
Kahramanmaras Sutcu Imam University Journal of Engineering Sciences
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference34 articles.
1. Akay, B. (2009). Nümerik optimizasyon problemlerinde yapay arı kolonisi algoritmasının performans analizi. Doktora Tezi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Ana Bilim Dalı, Kayseri 325s.
2. Azadeh, A., Ghaderi, S.F., Tarverdian, S., Saberi, M. (2007). Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption. Applied Mathematics and Computation, 186 (2) ,1731–1741. https://doi.org/10.1016/j.amc.2006.08.093
3. Barth, F. G. (1982). Insects and Flowers: The biology of a partnership. Princeton, N.J.: Princeton University Press.
4. Bayramoğlu, T., Pabucçu, H., Boz, F. (2017). Türkiye için anfis modeli ile birincil enerji talep tahmini. Ege Akademik Bakış, 17 (3), 431-446. https://doi.org/10.21121/eab.2017328408
5. Behrang, M.A., Assareh, E., Assari, M.R., Ghanbarzadeh, A. (2010). Application of PSO (particle swarm optimization) and GA (genetic algorithm) techniques on demand estimation of oil in Iran. Energy, 35(12), 5223-5229. https://doi.org/10.1016/j.energy.2010.07.043