MULTILEVEL THRESHOLDING FOR BRAIN MR IMAGE SEGMENTATION USING SWARM-BASED OPTIMIZATION ALGORITHMS

Author:

Toprak Ahmet Nusret1ORCID,Şahin Ömür1ORCID,Kurban Rifat2ORCID

Affiliation:

1. ERCİYES ÜNİVERSİTESİ

2. ABDULLAH GÜL ÜNİVERSİTESİ

Abstract

Image segmentation, the process of dividing an image into various sets of pixels called segments, is an essential technique in image processing. Image segmentation reduces the complexity of the image and makes it easier to analyze by dividing the image into segments. One of the simplest yet powerful ways of image segmentation is multilevel thresholding, in which pixels are segmented into multiple regions according to their intensities. This study aims to explore and compare the performance of the well-known swarm-based optimization algorithms on the multilevel thresholding-based image segmentation task using brain MR images. Seven swarm-based optimization algorithms: Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Gray Wolf Optimizer (GWO), Moth-Flame Optimization (MFO), Ant Lion Optimization (ALO), Whale Optimization (WOA), and Jellyfish Search Optimizer (JS) algorithms are compared by applying to brain MR images to determine threshold levels. In the experiments carried out with mentioned algorithms, minimum cross-entropy, and between-class variance objective functions were employed. Extensive experiments show that JS, ABC, and PSO algorithms outperform others.

Publisher

Kahramanmaras Sutcu Imam University Journal of Engineering Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3