IMPACT OF ELECTRIC CARS ON THE CRASH PERFORMANCE OF LONGITUDINAL BARRIERS

Author:

Yücel Ayhan Öner1ORCID

Affiliation:

1. AYDIN ADNAN MENDERES ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ

Abstract

The use of battery electric vehicles (EVs) is spreading around the world due to their advantages. The presence of large batteries makes electric cars heavier, and due to their position, the vehicle’s center of gravity is lowered compared to conventional internal combustion engine cars. The weight of an impacting vehicle is one of the critical parameters for the acceptable performance of longitudinal barriers. It is anticipated that EVs could pose failure risks for conventional safety hardware, yet there is still no revision regarding the use of EVs in existing full-scale crash test standards. In this study, the effect of electric cars on the crash performance of the H1 containment level longitudinal steel safety barrier was investigated through computer simulations. Three different vehicle models, each weighing 900 kg and currently used for TB11 finite element analyses, were modified according to the features of the selected reference EVs. Barrier crash performance was evaluated in terms of occupant safety and structural adequacy. Analysis results showed that with increasing vehicle weights in EV tests, injury severity indices become smaller, while the damage to the barrier gets larger. Further investigation of the crash performance of existing barriers with EVs is highly recommended.

Publisher

Kahramanmaras Sutcu Imam University Journal of Engineering Sciences

Reference34 articles.

1. AASHTO. (2016). Manual for Assessing Safety Hardware (Second Edition). American Association of State Highway and Transportation Officials (AASHTO).

2. Atahan, A. O., Yücel, A. T., & Erdem, M. M. (2014). Crash testing and evaluation of a new generation L1 containment level guardrail. Engineering Failure Analysis, 38, 25-37. https://doi.org/10.1016/j.engfailanal.2014.01.003

3. Atahan, A. O., & Yucel, A. O. (2013). Laboratory and field evaluation of recycled content sign posts. Resources, Conservation and Recycling, 73, 114–121. https://doi.org/https://doi.org/10.1016/j.resconrec.2013.02.002

4. Atahan, A. O., Yucel, A. O., & Guven, O. (2013). Development of N2–H1 Performance-Level Guardrail: Crash Testing and Simulation. Transportation Research Circular, E-C172.

5. Autozine. CG location of Renault (2023a). http://www.autozine.org/Archive/Renault/new/Zoe.html Accessed 15.10.23.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3