DEEP-LEARNING BASED MAXIMUM POWER POINT PREDICTION FOR A PV SYSTEM UNDER PARTIAL SHADING CONDITIONS

Author:

AKDERE Ramazan1ORCID,KILIC Erdal1ORCID,KEÇECİOĞLU Ö. Fatih1ORCID

Affiliation:

1. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ

Abstract

Bu çalışmada, kısmi gölgelenme koşulları (KGK) altındaki bir fotovoltaik (FV) sistemin, maksimum güç noktası (MGN) derin öğrenme yöntemi kullanılarak tahmin edilmiştir. Çalışmada kullanılacak veri seti Matlab/Simulink ortamında FV sistem modellenerek oluşturulmuştur. Bu veriler kullanılarak derin öğrenme ağının farklı katman sayısı ve nöron sayısı için başarısı incelenmiştir. Model başarısı ortalama mutlak yüzde hata (MAPE), ortalama mutlak hata (MAE), ortalama hata karekökü (RMSE) istatistiksel performans kriterleri ile değerlendirilmiştir. Çalışma sonucunda elde edilen tablo ve grafiklerden eğitim setindeki üç katmanlı ve 64 nöronlu sistemin daha başarılı sonuçlar verdiği gözlemlenmiştir.

Publisher

Kahramanmaras Sutcu Imam University Journal of Engineering Sciences

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference24 articles.

1. Alaskar, H., & Saba, T. (2021). Machine Learning and Deep Learning: A Comparative Review. Proceedings of Integrated Intelligence Enable Networks and Computing, 143-150.

2. Balkan, A. (2022). Şebeke bağlantılı bir fotovoltaik güç üretim santralinin tasarım aşamaları ve güç boyutlandırma faktörünün önemi. Yüksek Lisans Tezi, Çankırı Karatekin Üniversitesi Fen Bilimleri Enstitüsü, Çankırı.

3. Bassam, A.-H. (2018). Maximum Power Point Tracking Controlled Boost Converter Desing For Battery Charger. (MSc. Thesis). Yıldız Technical University,

4. Can, Y. (2020). Makine Öğrenmesi ve Derin Öğrenme Yöntemleri İle Dizel Motor Turbo Kompresör Sisteminin Modellenmesi.

5. Dandıl, E., & Gürgen, E. (2019). Yapay Sinir Ağları Kullanılarak Fotovoltaik Panel Güç Çıkışlarının Tahmini ve Sezgisel Algoritmalar ile Karşılaştırılması. Avrupa Bilim ve Teknoloji Dergisi(16), 146-158.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3