SDA: A NOVEL SKEWED-DEEP-ARCHITECTURE FOR VEHICLE MOTION DETECTION IN DRIVING VIDEOS

Author:

Temel Tansu1ORCID,Kılıçarslan Mehmet1ORCID,Hoşcan Yaşar1ORCID

Affiliation:

1. ESKISEHIR TECHNICAL UNIVERSİTY

Abstract

Collision avoidance mechanisms are important topics for studies in the field of autonomous vehicles. We could obtain prior information about the collision from the movement angles of vehicles. Therefore, it is important issue to learn the movement angles of vehicles in motion. In the study, an architectural model is developed that learns the horizontal movement angles of vehicles to form a base for collision warning systems. YOLOv3 is modified and used on motion profiles. Thanks to the learned angle values, also the bounding boxes match the traces in the motion profiles smoothly. The results obtained have a mAP value of 79% and an operating speed of 36 FPS. These results are better than when trained on motion profiles of the YOLOv3 architecture. In addition, the use of the new architecture on motion profiles and factors such as noise and bad weather in the image do not adversely affect the results. With these features, a fundamental step has been taken for anti-collision systems.

Funder

Scientific and Technological Research Council of Turkey

Publisher

Kahramanmaras Sutcu Imam University Journal of Engineering Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3