Three-dimensional printing of alginate: From seaweeds to heart valve scaffolds

Author:

Liberski Albert Ryszard1

Affiliation:

1. Sidra Medical and Research Center, P.O. Box 26999, Doha, Qatar

Abstract

Three-dimensional (3D) printing is a resourceful technology that offers a large selection of solutions that are readily adaptable to tissue engineering of artificial heart valves (HVs). Different deposition techniques could be used to produce complex architectures, such as the three-layered architecture of leaflets. Once the assembly is complete, the growth of cells in the scaffold would enable the deposition of cell-specific extracellular matrix proteins. 3D printing technology is a rapidly evolving field that first needs to be understood and then explored by tissue engineers, so that it could be used to create efficient scaffolds. On the other hand, to print the HV scaffold, a basic understanding of the fundamental structural and mechanical aspects of the HV should be gained. This review is focused on alginate that can be used as a building material due to its unique properties confirmed by the successful application of alginate-based biomaterials for the treatment of myocardial infarction in humans. Within the field of biomedicine, there is a broad scope for the application of alginate including wound healing, cell transplantation, delivery of bioactive agents, such as chemical drugs and proteins, heat burns, acid reflux, and weight control applications. The non-thrombogenic nature of this polymer has made it an attractive candidate for cardiac applications, including scaffold fabrication for heart valve tissue engineering (HVTE). The next essential property of alginate is its ability to form films, fibers, beads, and virtually any shape in a variety of sizes. Moreover, alginate possesses several prime properties that make it suitable for use in free-form fabrication techniques. The first property is its ability, when dissolved, to increase the viscosity of aqueous solutions, which is particularly important in formulating extrudable mixtures for 3D printing. The second property is its ability to form gels in mild conditions, for example, by adding calcium salt to an aqueous solution of alginate. The latter property is a basis for reactive extrusion- and inkjet printing-based solid free-form fabrication. Both techniques enable the production of scaffolds for cell encapsulation, which increases the seeding efficiency of fabricated structures. The objective of this article is to review methods for the fabrication of alginate hydrogels in the context of HVTE.

Publisher

Hamad bin Khalifa University Press (HBKU Press)

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3