Determination of the levels of Particulate Matter 25 and 10 and their elemental Composition in Qatar

Author:

Ali Ahmadi Ahmad1,Balakrishnan Perumal1,Kakosimos Konstantinos1,Goktepe Ipek1

Affiliation:

1. Qatar University

Abstract

Particulate matter (PM) pollution is one of the major environmental pollution issues severely affecting human health and air quality all over the world. Based on the recent World Health Organization (WHO) report, PM levels were considered relatively high in Qatar. This might mainly be attributed to arid climate, but also due to rapid industrialization and urbanization as well as traffic. The literature on PM pollution and its source is limited in Qatar and the region. Therefore, this study was carried out to assess the air quality at different locations in Qatar, identify the levels of PM2.5 and PM10, and determine the elemental composition of PM2.5 and PM10 to trace their sources. A total of 100 samples (60 for PM2.5 and 40 for PM10) were collected using SKC Deployable Particulate Sampler (DPS) System for 24-hr during the months of September 2016 to December 2016. The sampling was conducted at five different locations, namely, Qatar University (QU), Education City (EC), Al Waab street area (AD), Whole Sale Market area (WM), and Al-Wakrah City (AW). The elemental composition of PM samples was determined using an inductively coupled plasma optical emission spectrometry (ICP-OES). The relationship between the environmental conditions and PM levels were also established. The health risks associated with different PM levels was calculated using the US EPA Air Quality Index (AQI) tool. The overall mean concentrations of 24-hr PM2.5 ranged from 49.88 μg/m3 to 64.28 μg/m3, while PM10 levels were between 126.69 μg/m3 and 184.55 μg/m3. The four months mean concentrations of PM2.5 were determined to be 49.88, 64.28, 55.47, 58.84, and 56.52 μg/m3 at Qatar University, Education City, Al Waab, WSM, Al Wakrah city, respectively. The average 24-hr PM10 levels were 138.24 μg/m3 at QU, 156.44 μg/m3 at EC, 126.69 μg/m3 at AWb, 184.55 μg/m3 at WM, and 160.24 μg/m3 at AW. The concentrations of PM2.5 detected at each station exceeded the WHO guideline (20 μg/m3) by 2.5 to 3 fold during the study period. The presence of high concentrations of Ca, Fe, Al, Fe, Sr, Mn, Na, and Mg indicated the major sources of PM to be soil/crustal. The identification of Ni, Co, Cr, Cd, Ba, Pb, V, and Zn were directly related to anthropogenic sources, specifically due to fossil fuel combustion and vehicular emission and these levels were reported at the highest levels at the wholesale market station. The AQI levels reported at all stations indicated that overall air quality at Qatar University and Al Waab street area was considered to be Moderate for PM10 and Unhealthy for sensitive group for PM2.5 levels. While in Education City, Whole Sale Market, and Al-Wakrah city areas had unhealthy and unhealthy for sensitive group ratings for PM2.5 and PM10 levels, respectively. The statistical analysis on determining the effect of meteorological factors (temperature, humidity, and wind speed) on the concentrations of PM2.5 and PM10 showed that there is a significant relationship (P?0.05) between wind speed and temperature and PM levels at all stations. These findings highlight the need for more research on PM pollution 1) to determine seasonal levels since this study only covered four months (September-December), 2) to better understand the source of PM pollution (in addition to elements, the levels of Poly Aromatic Hydrocarbons should also be determined), and 3) to establish more effective control measures to protect public health and preserve the environment in Qatar.

Publisher

Hamad bin Khalifa University Press (HBKU Press)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hierarchical Bayesian Spatio-Temporal Modeling for PM10 Prediction;Journal of Applied Mathematics;2021-09-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3