Measuring the saturated hydraulic conductivity of peat substrates in nursery containers

Author:

Allaire S. E.,Caron J.,Gallichand J.

Abstract

Pore size, distribution and continuity are important characteristics for the exchange and storage of air and water in artificial mixes. Saturated hydraulic conductivity (Ks) measurements can be used to obtain such a characterization. However, two difficulties are encountered when using Ks in potting media. First, the validity of Ks may be limited because it may not apply in media composed of coarse material or peat. Second, the structure of peat substrates is very sensitive and in situ measurements of potted peat substrates (i.e. measurements made directly in the pots) should be carried out to avoid any disruptive effect due to handling. Such a measurement, when made in pots, may require the evaluation of the water flux reduction resulting from the container outflow configuration. The objectives of this study were therefore to check the validity of Darcy’s law for peat substrates and to propose an approach for estimating the saturated hydraulic conductivity from flow measurements made in nursery containers. For three different substrates, water flow in artificial mixes followed Darcy’s law for hydraulic gradients ranging from 1.1 to 1.6 cm cm−1. Experimental results showed that the measured fluxes in 5-L nursery container filled at five different substrate heights (9, 11.5, 14, 16.5 and 19 cm) with laterally located drainage holes were significantly different from those measured in pots with the bottom removed (therefore equivalent to measurement currently made in cylinders) at P = 0.0022. Fluxes in containers with bottoms removed were 7–31% higher than in intact pots. Water flux measurements may therefore need to be corrected for this flux reduction in order to accurately estimate hydraulic conductivity from flow experiments run in pots. A correction factor based on the results obtained from a finite difference model was derived and calibrated. Then, this correction factor was used to convert flux measurements made in pots with lateral holes into equivalent flux that would have been obtained had the pot had an open bottom. After correction, no significant flux reductions were found between pots with open bottoms and pots with lateral holes (P = 0.55). A correction factor estimated from Laplace’s equation, once calibrated, can therefore be applied to flux measurements obtained from pots to obtain estimates of Ks of undisturbed potted media. Key words: Hydraulic conductivity, peat substrates, container

Publisher

Canadian Science Publishing

Subject

Soil Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3