Effects of potato hilling on water runoff and soil erosion under simulated rainfall

Author:

Chow T. L.,Rees H. W.

Abstract

The practice of planting potatoes (Solanum tuberosum) in rows and hilling the plants at some stage of growth has been universally adopted. Using a rainfall simulator and runoff-erosion plots (0.9 m wide × 1 m long), the effects of hilling on runoff, infiltration, and soil loss were examined on an Orthic Dystric Brunisol. Tests of the rainfall simulator revealed that variations in operating pressure (36.5–62.1 kPa) and soil slope conditions (0–15%) did not significantly (P < 0.05) affect the intensity and spatial uniformity of the simulated rainfall. The potato hills studied were 90 cm apart with heights of approximately 25 cm, row-sideslopes of 35° and furrow widths of 10 cm, which are similar to those used in commercial production. Although not significantly different at P < 0.05, the runoff rate from the hilled plots was approximately 20% higher than that from the unhilled plots. Hilling resulted in a significant reduction in infiltration rate (P < 0.05). Average soil loss from the hilled plots was approximately four times higher than from the unhilled plots. For runoff rates below a critical value of 0.93 L min−1, the rate of soil loss correlated linearly with the runoff rate, whereas a non-linear exponential equation was generated for the entire range of runoff with r = 0.94. The increase in soil loss as a result of hilling was adequately predicted from row-sideslope gradients using an existing equation derived from erosion data obtained from fields having conditions similar to that of potato hills. Key words: Universal soil loss equation, slope steepness, cover and management factor, row-sideslope, spatial uniformity, infiltration

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3