Poultry manure effects on soil nitrogen processes and nitrogen accumulation in red raspberry

Author:

Dean D. M.,Zebarth B. J.,Kowalenko C. G.,Paul J. W.,Chipperfield K.

Abstract

This study examined the effects of solid poultry layer manure addition on soil N processes and on dry matter and N accumulation in red raspberry (Rubus idaeus L.). In trials conducted in two years, approximately 50% of the 400 kg total N ha−1 applied as manure was recovered as soil inorganic N 1 mo after manure application when manure was incorporated within 4 h of application. Three trials were conducted in two commercial raspberry fields: one with no history of manure use and one other with a history of heavy annual applications of poultry manure. Treatments included 55 kg N ha−1 as NH4NO3, 100 or 200 kg total N ha−1 as manure, and a control that received no manure or fertilizer N. Soil inorganic N to 60 cm depth was measured throughout the growing season. Berry yield was estimated, and dry matter and N accumulation was determined in floricanes at first berry ripening and in primocanes at the end of the growing season. Few significant effects of N fertilization were measured for any crop yield, growth or N accumulation parameter. This was attributed to the large (>150 kg N ha−1) supply of N to the crop in the unamended soil, primarily from soil N mineralization. Dry matter accumulation in the fruiting clusters was strongly correlated to estimated berry yield, and may provide a simple means for assessing relative yield within experiments. Soil nitrate measured in August after berry harvest may serve as a "report card" to assess N management in the current growing season, to refine fertilizer N management for subsequent growing seasons, and as an index of the risk of nitrate leaching over the following fall and winter in south coastal British Columbia. Key words: Nitrogen mineralization, nitrate leaching, manure N availability, Rubus idaeus

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3