Within-season grass yield and nitrogen uptake, and soil nitrogen as affected by nitrogen applied at various rates and distributions in a high rainfall environment

Author:

Kowalenko C. G.,Bittman S.

Abstract

A study was conducted to assess the effect of rates of nitrogen (N) fertilizer, and to compare the effectiveness of single and split applications of N on yield and quality of forage grass and on the potential for nitrate leaching. Three field trials were conducted at different sites in successive years, with plant and soil measurements made at each of four harvests. Extractable inorganic N was measured to 0.6 m in three depth increments prior to spring N application and after each cut in order to evaluate immediate and residual effects of the N fertilizer on plant growth, and the environmental implications of the applications. Response of yield and N uptake to N applications differed in the three trials. In all trials, the effect of N rate was greater than the effect of N distribution during the growing season. Although there were only small, whole-season yield increases associated with distributing the N over the season, the distribution of yield within the season was changed considerably. Soil data showed relatively little leaching of N during the growing season under contrasting weather conditions of the three growing seasons. Retention of N within the soil root zone contributed to residual effects on yield and plant uptake, and these effects frequently lasted to the end of the growing season. Crop response to N applications was apparently influenced by the N supplying capacity of the soil and the effect of weather on crop growth rate. Soil nitrate at harvest did not vary consistently with N application treatments in the three trials, other than having highest concentrations at the highest fertilizer rate. Soil nitrate was greatest after cut 1 and decreased sharply toward the end of the season following the single spring applications, whereas plots receiving equal distributions of N through the season had relatively high concentrations at all sampling times during the season. Soil extractable ammonium concentration was influenced by high rates of N application, but the effect was small and largely confined to the sampling after cut 1. The soil always contained about 10–15 mg kg−1 extractable ammonium in surface 0.3 m depth, with a tendency for slightly greater concentrations in early spring. Soil ammonium appears to be involved in soil and plant processes, but the exact magnitude and significance of its involvement could not be determined from the measurements made. The redistribution of grass yield by splitting the application of fertilizer N within the growing season would be beneficial for grazing systems. Unfortunately, soil inorganic N measurements will not greatly assist in determining the precise rate and distribution of fertilizer for varying field conditions. Key words: N response, N uptake, residual N effect, soil extractable N, N leaching

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3