Author:
Rochette P.,Desjardins R. L.,Gregorich E. G.,Pattey E.,Lessard R.
Abstract
A study was carried out to quantify the diurnal variation of soil respiration in fallow and barley fields and to assess the impact of atmospheric CO2 concentration (C) and crop photosynthesis on soil respiration rates under field conditions. Soil respiration rate was measured twice a day (06:00 and 13:00 h EST) for 69 consecutive days at Ottawa, Ontario, Canada, during the 1990 growing season. Measurements were taken on fallow and under a barley (Hordeum vulgare L. ’Léger’) crop using a dynamic closed chamber system. Crop net photosynthesis was obtained by substracting soil respiration from the vertical CO2 fluxes above the crop which was obtained using the eddy correlation technique. Afternoon soil respiration averaged 22 and 17% more than that in the morning on fallow and barley soils, respectively. No correlation was found between atmospheric CO2 concentration and morning respiration rates. The two daily respiration measurements on fallow soil could be fit to the same function of soil temperature despite important differences in C at the time of measurement. These results indicate that soil temperature might account for the differences in R between morning and afternoon, and that the effect of C need not be considered for the modelling of the soil respiration diurnal cycle. Respiration in soil under barley was 25% lower than in fallow soil. Soil under barley was estimated to have at least 199 g C m−2 more than fallow soil at the time of harvest due to the lower soil respiration and to the input of carbon by barley root residues. High correlations were obtained between crop photosynthesis and soil respiration rates during vegetative and reproductive periods, confirming that the biotic plant component is an important factor controlling soil respiration rates in cropped fields. Key words: Root respiration, chamber measurements, CO2 flux, crop net photosynthesis, greenhouse gas, soil organic matter.
Publisher
Canadian Science Publishing
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献