Author:
Pararajasingham S.,Hunt L. A.
Abstract
Research on genotypic variation in the response of leaf-area production and expansion to photoperiod in wheat is limited. Growth-cabinet experiments using four spring and four winter wheat (Triticum aestivum L.) cultivars and four photoperiod (8, 12, 16 and 20 h) treatments were thus conducted with the objective of investigating the effect of photoperiod on leaf appearance rate and leaf dimensions. Winter wheats were grown without vernalization. In the spring wheats, flag leaves and spikes were formed under the longer photoperiod (16 and 20 h) treatments, and leaf number increased linearly with time. At the shorter photoperiods, flag leaves and spikes appeared in some cultivars only, and the rate of increase in leaf number decreased in the later stages. Final leaf number was greater at shorter photoperiods. In the winter cultivars, more leaves appeared than in the spring types under the longer photoperiods. For leaves 3–7, leaf number was a linear function of time, with photoperiod and cultivar effects. For one of four spring cultivars, the rate of leaf appearance was greater at 8 h than at 20 h, whereas for three of the winter cultivars the reverse was true. Leaf length increased with leaf number up to at least nodes 5–6 for both spring and winter types but decreased for the later-formed leaves for the spring but not for the winter types. Leaves of plants grown under photoperiods longer than 8 h were longer and broader than those grown under the short photoperiod, and the effect was more pronounced in winter than in spring cultivars. Such genotypic differences in the direct effects of photoperiod on leaf dimensions, which could influence the rates of leaf-area production and dry-matter accumulation under field conditions, emphasize that future studies should incorporate genotypes from different eco-physiological regions and that simulation models of wheat growth and development may need to account for variability in the control of vegetative growth. Key words: Wheat, photoperiod, leaf appearance rate, leaf length, leaf width
Publisher
Canadian Science Publishing
Subject
Horticulture,Plant Science,Agronomy and Crop Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献