Effect of split application of sulphur and nitrogen on growth and yield attributes of Brassica genotypes differing in time of flowering

Author:

Ahmad Altaf,Abrol Y. P.,Abdin M. Z.

Abstract

According to prevalent agronomic practices for cultivation of Brassica genotypes, N is applied in split doses, while S is applied as a basal dose. This may create imbalance in the supply of these nutrients during the growth and development of the crop because metabolism of N and that of S are closely linked and play a central role in protein synthesis. The requirement of one depends on the supply of the other, and the imbalance in their supply causes a reduction in the yield because of reduced uptake and assimilation of the two nutrients. In the present investigation, therefore, S was applied in split doses, along with N, to study its effect on growth and yield attributes of Brassica juncea (L.) Czern. and Coss. (V1) and Brassica campestris L. (V2). In the experiment, conducted in the field, 40 kg S ha−1 as CaSO4 (gypsum) was applied either in a single basal application (S1) or in two (S2) or three (S3) split applications; and 100 kg N ha−1 as urea was applied either in two (N2) or three (N3) splits. Biomass accumulation, leaf-area index (LAI), leaf-area duration (LAD), crop growth rate (CGR) and photosynthesis in the leaves were determined at various phenological stages. Split application of S and N (S2N2 or S3N3) resulted in significant improvement in growth and yield of both the genotypes compared with the application of S in a single basal application and N in two splits (S1N2). Genetic variability was observed between the two genotypes in response to split application of S and N. V1 responded better when S and N was applied in two split doses (S2N2) than when it was applied as S1N2 or S3N3 This S2N2 treatment resulted in 40.0, 39.7, 35.5, 48.2 and 18.1% enhancement in biomass accumulation, LAI, LAD, CGR and photosynthetic rate, respectively in comparison with S1N2. Seed yield, biological yield and harvest index were improved by 38.3, 26.3 and 9.5%, respectively, by S2N2 over the results obtained with S1N2. In the case of V2, three split applications of S and N (S3N3) resulted in maximum growth and yield. Increases in biomass accumulation, LAI, LAD, CGR and photosynthetic rate due to application of S3N3 were 48.4, 81.3, 77.9, 101.1 and 28.6% respectively, over the results of S1N2. Seed yield, biological yield and harvest index improved by 41.3, 26.9 and 11.6% respectively, with this treatment.On the basis of results obtained in this study, it can be concluded that S must be applied in split doses for optimum growth and yield of Brassica genotypes. The variability in response of these genotypes to split application of S and N was due to differences in flowering time, as V1 flowered earlier (just after the application of the second dose of S and N) than V1 (just after the application of the third dose of S and N). Key words: Brassica genotypes, nitrogen, sulphur, split application, growth, yield

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3