Response to water stress of soil enzymes and root exudates from drought and non-drought tolerant corn hybrids at different growth stages

Author:

Song Fengbin1,Han Xiying1,Zhu Xiancan1,Herbert Stephen J.2

Affiliation:

1. Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130012, China

2. Center for Agriculture, University of Massachusetts, Amherst, MA, 01003, USA

Abstract

Song, F., Han, X., Zhu, X. and Herbert, S. J. 2012. Response to water stress of soil enzymes and root exudates from drought and non-drought tolerant corn hybrids at different growth stages. Can. J. Soil Sci 92: 501–507. Drought tolerant corn hybrids (Zea mays L.) are an excellent model to evaluate the effect of water stress on rhizosphere functions. The purpose of this study was to investigate the influences of water stress on soil pH, enzyme activities, and root exudates from corn. Two corn hybrids, Baidan 9 (drought tolerant) and Baidan 31 (non-drought tolerant) were grown in soil-filled pots for pH and enzyme assays and in hydroponics culture for root exudate analysis. Water stress was imposed at four growth stages: seedling, elongation, tasseling and grain-filling stages. Soil pH was lower in the rhizosphere than bulk soil, but was not affected by water deficiency. Water stress increased protease activity at the seedling stage, but reduced its activities at other stages compared to the control. A significant positive correlation was observed between pH and alkaline phosphatase activity under water stress. Compared to Baidan 31, the rhizosphere of drought-tolerant Baidan 9 had greater protease and catalase activities at all growth stages, greater alkaline phosphatase, lower acid phosphatase and greater invertase activities at elongation, tasseling and filling stages. Osmotic stress increased the organic acid concentration (malic, lactic, acetic, succinic, citric and maleic acids) in root exudates of Baidan 9 and Baidan 31; as well there was a greater fumaric acid concentration in Baidan 31 under osmotic stress than without stress. The increased soil enzyme activities and organic acids exuded from the rhizosphere of plants under water stress might contribute to drought tolerance in corn hybrids.

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3