Author:
Pellerin Annie,Parent Léon-Étienne,Fortin Josée,Tremblay Catherine,Khiari Lotfi,Giroux Marcel
Abstract
The Mehlich-III method (M-III) (Mehlich 1984) is a multinutrient agri-environmental routine soil-testing procedure used in many jurisdictions in North America, but one that is affected by soil texture. The PW determined by the Sissingh (1971) method is an index of surface water contamination and desorbed P that is not influenced by soil texture and that can be used to define specific M-III critical environmental indices by soil texture group. Our objective was to define critical environmental indices by relating (P/Al)M-III to PW. We analyzed 275 soil samples from surface, and 175 from subsurface layers, varying in genesis, texture, and pH. The relationship between PW and (P/Al)M-III was influenced by soil properties, particularly soil texture and genesis. Fine-textured (> 300 g clay kg-1) and gleyed soils tended to release more PW at a given (P/Al)M-III compared with coarse-textured (≤ 300 g clay kg-1) and podzolized soils. Using a critical value of 9.7 mg PW L-1 derived from the literature, critical environmental (P/Al)M-III ratios were found to be 0.131 for coarse-, and 0.076 for fine-textured soils. Subsurface PW increased significantly with (P/Al)M-III above 0.131 in the plough layer of coarse-textured soils, but was independent of (P/Al)M-III in fine-textured soils, indicating contrasting mechanisms of P accumulation in subsurface layers (matrix vs. preferential flow). After accounting for soil texture, (P/Al)M-III appeared to be a useful index of P accumulation in Quebec mineral soils. Key words: Soil phosphorus saturation, Mehlich-III soil extraction method, water-extractable phosphorus, soil environmental phosphorus threshold, soil texture
Publisher
Canadian Science Publishing
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献