Use of hot KCl-NH4-N to estimate fertilizer N requirements

Author:

Campbell C. A.,Jamel Y. W.,Jalil A.,Schoenau J.

Abstract

We need an easy-to-use chemical index for estimating the amount of N that becomes available during the growing season, to improve N use efficiency. This paper discusses how producers may, in future, use crop growth models that incorporate indices of soil N availability, to make more accurate, risk-sensitive estimates of fertilizer N requirements. In a previous study, we developed an equation, using 42 diverse Saskatchewan soils, that related potentially mineralizable N (N0) to NH4N extracted with hot 2 M KCl (X), (i.e., N0 = 37.7 + 7.7X, r2 = 0.78). We also established that the first order rate constant (k) for N mineralization at 35°C is indeed a constant for arable prairie soils (k = 0.067 wk−1). We modified the N submodel of CERES-wheat to include k and N0 (values of N0 were derived from the hot KCl test). With long-term weather data (precipitation and temperature) as input, this model was used to estimate probable N mineralization during a growing season and yield of wheat (grown on fallow or stubble), in response to fertilizer N rates at Swift Current. The model output indicated that the amount of N mineralized in a growing season for wheat on fallow was similar to that for wheat on stubble, as we hypothesized. Further the model indicated that rate of fertilizer N had only minimal effect on N mineralized. We concluded that, despite the importance of knowing the Nmin capability of a soil, it is available water, initial levels of available N and rate of fertilizer N that are the main determinants of yield in this semiarid environment. The theoretical approach we have proposed must be validated under field conditions before it can be adopted for use. Key words: N mineralization, Hot KCl-NH4-N, potentially mineralizable N, CERES-wheat model

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3