SOIL PERSISTENCE OF THIAMETURON (DPX M6316) AND PHYTOTOXICITY OF THE MAJOR DEGRADATION PRODUCT

Author:

SMITH A. E.,AUBIN A. J.,SHARMA M. P.

Abstract

The persistence of the herbicidal ester (14C)thiameturon was studied at different temperature and moisture conditions in three Saskatchewan soils. In all soils at 20 °C and 85% field capacity, the (14C)ester underwent rapid hydrolysis to (14C)thiameturon acid. The hydrolysis was over 85% complete in 1 week, and more than 95% complete after 2 wk. The soil degradation of (14C)thiameturon acid was considerably slower than that of the parent ester. Transformation of (14C)thiameturon to acid in all soils at 85% field capacity was temperature dependent, being slowest at 10 °C, and fastest at 30 °C. Conversion to the acid was also moisture dependent. There was no hydrolysis in air-dry soils after 10 wk. At 50% field capacity 22% of the ester remained after 1 wk, and at field capacity less than 2% of the applied ester was recoverable after 1 wk. Soils treated with thiameturon acid at rates up to 500 μg g−1 exhibited no phytotoxicity to canola, lentil, or sugarbeet seedlings. Key words: Herbicide, thiameturon, persistence, phytotoxicity

Publisher

Canadian Science Publishing

Subject

Soil Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3