Nitrogen contribution of field pea in annual cropping systems. 1. Nitrogen residual effect

Author:

Beckie H. J.,Brandt S. A.

Abstract

The nitrogen (N) residual effect of field pea (Pisum sativum L.) to a succeeding non-legume crop was determined in a small plot experiment at Scott, Saskatchewan in the moist Dark Brown soil climatic zone, and in a small plot and landscape experiment near Melfort, Saskatchewan in the moist Black soil climatic zone from 1993 to 1995. The N residual effect, defined as the amount of fertilizer N required for a non-legume crop grown on non-legume stubble to produce the same yield as that of the non-legume grown on field pea stubble, averaged 27 and 12 kg N ha−1 at Melfort and Scott, respectively, in the small plot experiment, and 28 kg N ha−1 in the landscape experiment. Landscape slope position and preseeding tillage did not have a significant or consistent effect on the magnitude of the N residual effect of field pea to the succeeding non-legume crop. The N residual effect, calculated using the difference (economic N rate) method, was presumably due solely to the N benefit, with no non-N benefit contribution. The non-N benefit was effectively marginalized when the crop sequence that included field pea was compared with a reference rotation that included a cereal and an oilseed crop. Based on field pea seed yields and the calculated N residual effect, the N credit (N fertilizer replacement value) of field pea to a succeeding non-legume crop in the moist Black soil climatic zone was 15 kg N ha−1 for every 1000 kg of seed. This is slightly higher than the current recommendation of 5 to 10 kg N ha−1 1000 kg−1 seed. Results from the small plot experiment at Scott indicate that current N credit recommendations for field pea are appropriate for the moist Dark Brown soil climatic zone. Key words: Pisum sativum, Triticum aestivum, Hordeum vulgare, Brassica rapa, Linum usitatissimum, nitrogen residual effect

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3