Carbon dynamics in a biochar-amended loamy soil under switchgrass

Author:

Allaire Suzanne E.1,Baril Benjamin1,Vanasse Anne2,Lange Sébastien F.3,MacKay John4,Smith Donald L.5

Affiliation:

1. Centre de Recherche sur les Matériaux Renouvelables, Pavillon 2480 Hochelaga, Université Laval, Québec, Canada G1V 0A6

2. Département de phytologie, Pavillon Comtois, 2425, rue de l'Agriculture, Université Laval, Québec, Canada G1V 0A6

3. Centre de Recherche en Horticulture, 2480 Hochelaga, Université Laval, Québec, Canada G1V 0A6

4. Centre d’étude de la forêt, Département des sciences du bois et de la forêt, 1030 rue de la Médecine, Université Laval, Québec, Canada G1V 0A6

5. Department of Plant Science, McGill University, Macdonald Campus, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec, Canada H9X 3V9

Abstract

Allaire, S. E., Baril, B., Vanasse, A., Lange, S. F., MacKay, J. and Smith, D. L. 2015. Carbon dynamics in a biochar-amended loamy soil under switchgrass. Can. J. Soil Sci. 95: 1–13. The environmental impacts of switchgrass production for bioenergy could be reduced through the use of biofertilizers rather than mineral fertilizers and through soil amendment with biochar. The objectives of this study were: (1) to assess the impact of biochar and biofertilizer on switchgrass (Panicum virgatum L.) yield and parameters related to carbon dynamics, (2) to correlate carbon parameters with soil physico-chemical properties over the first two growing seasons, and (3) to develop a C budget. A complete randomized block design was installed in a sandy loam with split plot treatment design, the main plots receiving 0 or 10 t ha−1of biochar and the sub − plots receiving no fertilization, mineral N fertilization, or biofertilizers. Biofertilizers had no significant impact on plant and soil. Biochar increased yield relative to the control treatment by about 10% during the first year and root biomass by up to 50% after 2 yr (P>0.1). Mineral N fertilization also increased yield resulting in higher plant C sequestration after 2 yr. Biochar increased CO2soil concentration (CO2-soil) by up to 50% but its impact on CO2emission flux (CO2-flux) changed over time. The impact of mineral fertilization on CO2-fluxalso varied with time. Soil CO2dynamics was mostly influenced by temperature, N and water content. Biochar and fertilization treatments showed interactions on some plant and soil parameters. The highest C sequestration budget was obtained with a combination of biochar and mineral N fertilization. The equivalent of about one-third of the increase in soil C content associated with biochar treatments was respired away by soil microorganisms. Nearly one-fourth of C sequestered by plants remained in or at the soil surface (root and crop residues).

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3