Optimal time for remote sensing to relate to crop grain yield on the Canadian prairies

Author:

Brian McConkey Prakash Basnyat,,Lafond Guy P.,Moulin Alan,Pelcat Yann

Abstract

The optimal time to acquire remote sensing imagery to relate to grain yield has not been thoroughly investigated for the Canadian prairies. Remotely sensed data collected when there is the best relationship with yield should provide useful information on the in-field spatial variability of biophysical factors affecting crop productivity relevant to site-specific management. The correlations of normalized difference vegetation index (NDVI) with grain yield for three dates in 2000 at Indian Head and Swift Current, SK, for field pea, canola, and spring wheat were compared. No single date consistently had the highest NDVI-yield correlation for all crops. The period between Jul. 10 to 30 was optimal to obtain NDVI to relate to grain yield for springseeded crops that typically mature in August. Significant NDVI-yield correlations for this period were confirmed in three additional site-years. In a further site-year, however, NDVI-yield correlation was significant for wheat and pea, but not for canola. Occasional problems relating the NDVI to canola yield were attributed to characteristics of the canola canopy, namely, the highly reflective flowers and the dropping of leaves after flowering. In terms of both magnitude and temporal stability of the NDVI-yield correlation, we ranked the crops as: spring wheat, then pea, and then canola. Key words: Remote sensing; grain yield, field pea, canola, wheat, normalized difference vegetation index

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3