Author:
Carter M. R.,Gregorich E. G.,Angers D. A.,Beare M. H.,Sparling G. P.,Wardle D. A.,Voroney R. P.
Abstract
Soil microbial biomass (SMB) measurements are often used in soil biological analysis; however, their interpretation can be problematic. In this review, both the limitations and benefits of indirect (both CHCl3 fumigation incubation and fumigation extraction, and substrate-induced respiration) SMB measurements are outlined, along with their value and interpretation as attributes or indicators to assess some soil quality (SQ) functions (e.g., enhance plant growth, maintain aggregation, regulate energy) for mainly humid, temperate soils, with specific emphasis on research conducted in eastern Canada and New Zealand. Indirect SMB methods are subject to limitations analogous to "soil test" procedures (e.g., soil sampling and handling, water content, storage prior to treatment), and also the difficulties with establishing an acceptable "control" and fraction (i.e., k value) of SMB mineralized or extracted. In many cases, such limitations present a need for some degree of standardization (e.g., pre-conditions of 7- to 10-d incubation at 25°C and −0.001 MPa water potential) prior to SMB measurement. However, for SQ assessment, where "comparative" rather than "absolute" values of SMB are often of interest, use of commonly derived k values seem appropriate for surface soils.Soil ecological factors govern SMB and often underlie much of the spatial and temporal variation in SMB. Plant species composition, mainly through net primary productivity and litter quality, can affect SMB measurements along with trophic cascades in soil, where interactions among soil organisms can influence microbial activity. Benefits of SMB measurements relate mainly to the assessment of both soil C turnover and management induced changes in organic matter. The combination of SMB and δ13C to elucidate the transformations and fate of organic C in cropping and soil management systems has also shown that both temporal and spatial redistribution of C inputs, and soil type (i.e., particle size distribution) are dominant factors in turnover and nutrient flow through the SMB.For SQ assessment, SMB is not a useful indicator for the function of soil as a "medium for plant growth" in regard to plant productivity for intensively farmed temperate soils. For the function of soil to "maintain aggregation", where SMB is one agent only of a multi-faceted process, the relationship between SMB and soil aggregation is not always present and tends to be site-specific. In regard to the "regulate energy" soil function, SMB is related to some degree with decomposition and mineralization processes. The main role of SMB for SQ assessment is to serve within a minimum data set of other indicators (e.g., macroorganic C) to monitor soil organic C storage and change. Key words: Soil microbial biomass, humid climate, soil quality
Publisher
Canadian Science Publishing
Cited by
71 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献