Context for re-evaluating agricultural source phosphorus loadings to the Great Lakes

Author:

Joosse P. J.1,Baker D. B.2

Affiliation:

1. Environmental Management Branch, Ontario Ministry of Agriculture, Food and Rural Affairs, Guelph, Ontario, Canada N1G 4Y2

2. National Centre for Water Quality Research, Heidelberg University, Tiffin, OH 44883, USA

Abstract

Joosse, P. J. and Baker, D. B. 2011. Context for re-evaluating agricultural source phosphorus loadings to the Great Lakes. Can. J. Soil Sci. 91: 317–327. Over the past decade, scientists have been discussing the re-emergence of harmful algal blooms and excessive growth of Cladophora in some areas of the Great Lakes. An observation that has emerged from these discussions is that management of non-point or diffuse sources of phosphorus will be more important in the future in order to address symptoms of eutrophication in the nearshore. This paper provides context for this renewed focus on managing non-point source tributary loads and is based primarily on materials and discussions from the Great Lakes P Forum. There are changes that have occurred in the lakes and tributaries in the past 15 yr that indicate a greater need to focus on non-point sources, whether urban or rural. Changes have also occurred in land management to reduce non-point P losses from agriculture. While these changes have reduced sediment and particulate P loading in some Ohio tributaries, the more bioavailable, dissolved P forms have increased. As there is incomplete knowledge about the mechanisms that are influencing algal growth, it could be a challenge to demonstrate, in the near term, improvements in water quality with further P reductions from agriculture alone. Regardless, there appears to be a desire for improved accountability and transparency for agricultural non-point source P management.

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3