Short-term C and N dynamics in a soil amended with pig slurry and barley straw: a field experiment

Author:

Chantigny Martin H,Rochette Philippe,Angers Denis A

Abstract

Interactions between animal slurries and crop residues can impact on soil N availability during decomposition. Our objective was to study the short-term decomposition of pig slurry and barley straw incorporated alone or in combination. A field experiment was conducted on a sandy loam unamended (control) or amended with 60 m3 ha–1 pig slurry (PS) or 4 Mg ha–1 barley straw (BS), or both (PSBS). Surface CO2 and N2O fluxes, soil water content and temperature, microbial biomass C, and NO3 and NH4+ contents were monitored during 28 d in the 0- to 20-cm soil layer. Large CO2 fluxes occurred during the first 4 h of the experiment in slurry-amended plots that were attributed to carbonate dissociation when slurry was mixed to the soil. Specific respiration activity (ratio of CO2-C fluxes-to-microbial biomass C) was increased in slurry-amended soils for the first 7 d, likely due to the rapid oxidation of volatile fatty acids present in slurry. After 28 d, 26% more C had been evolved in PSBS than the sum of C released from PS and BS, indicating a synergistic interaction during decomposition of combined amendments. Adding straw caused a net but transient immobilisation of soil N, especially in PSBS plots where 36% of slurry-added NH4+ was immobilised after 3 d. Slurry-NH4+ was rapidly nitrified (within 10 d), but N2O production was not a significant source of N loss during this study, representing less than 0.3% of slurry-added NH4+. Nevertheless, about twice the amount of N2O was produced in PS than in PSBS after 28 d, reflecting lower soil N availability in the presence of straw. Our study clearly illustrates the strong interaction existing between soil C and N cycles under field conditions as slurry mineral N appeared to stimulate straw-C mineralisation, whereas straw addition caused a net immobilisation of slurry N. Key words: Animal slurry, crop residues, C-N relationships, organic amendments

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3