Influence of the shape of inter-horizon boundary and size of soil tongues on preferential flow under shallow groundwater conditions: A simulation study

Author:

Kulasekera Priyantha B.1,Parkin Gary W.1

Affiliation:

1. School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Abstract

Kulasekera, P. B. and Parkin, G. W. 2011. Influence of the shape of inter-horizon boundary and size of soil tongues on preferential flow under shallow groundwater conditions: A simulation study. Can. J. Soil Sci. 91: 211–221. Detailed studies of the impact of soil tongues at soil horizon interfaces are very important in understanding preferential flow processes through layered soils and in improving the accuracy of models predicting water and solute transport through the vadose zone. The implication of having soil tongues of different shapes and sizes created at the soil horizon interface on solute transport through a layered soil horizon was studied by simulating water and solute transport using the VS2DI model. This 2-D simulation study reconfirmed that soil tongues facilitate preferential flow, and the level of activeness of tongues may depend on the number of soil tongues, their spacing and distribution. Also, the size of the soil tongues (length and diameter at the interface between the soil horizons) and their shape influence the rate of preferential flow. Increasing tongue length consistently resulted in an increase in solute velocity across the entire soil profile regardless of the tongue shape; for example, a soil tongue of 0.25 m length increased solute velocity by about 1.5 times over a soil profile without tongues, but this increase might be different for soil types and groundwater conditions other than those considered in this study. Narrowing of tongues increased solute velocity, whereas increasing the number of tongues in a wider soil profile decreased the solute-front's velocity. As tongue length increased, the area containing solutes at prescribed elapsed times decreased. An implication of this study is that soil horizon tongue shape and spacing reduce pollutant residence times, hence inter-horizon boundary morphology should be considered when modelling transport through the vadose zone. As well, since the solute velocity behaviours of a triangular- and a wider rectangular-shaped tongue were nearly identical, simply measuring solute velocity in the field will reveal little information on the shape of a soil tongue.

Publisher

Canadian Science Publishing

Subject

Soil Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3