Artificial neural network model for estimating the soil temperature

Author:

Ozturk Murat1,Salman Ozlem2,Koc Murat1

Affiliation:

1. Department of Physics, Faculty of Art and Sciences, Suleyman Demirel University, 32260 Isparta, Turkey (e-mail: )

2. CAD/CAM Research and Application Center, Suleyman Demirel University, 32260 Isparta, Turkey

Abstract

Ozturk, M., Salman, O. and Koc, M. 2011. Artificial neural network model for estimating the soil temperature. Can. J. Soil Sci. 91: 551–562. Although soil temperature is a critically important agricultural and environmental factor, it is typically monitored with low spatial resolution and, as a result, methods are required to estimate soil temperature at locations remote from monitoring stations. In this study, cost-effective, feed-forward artificial neural network (ANN) models are developed and tested for estimating soil temperature at 5-, 10-, 20-, 50- and 100-cm depths using standard geographical and meteorological data (i.e., altitude, latitude, longitude, month, year, monthly solar radiation, monthly sunshine duration and monthly mean air temperature). These data plus measured monthly mean soil temperature were collected for 2006–2008 from 66 monitoring stations distributed throughout Turkey to obtain a total of 2376 data records (36 months×66 monitoring stations) for each of the five soil depths. At each soil depth, 1800 randomly selected data records were used to develop and train a separate ANN model, and the remaining 576 records at each depth were used to test and validate the resulting models. Good agreement was obtained between ANN-estimated soil temperature and measured soil temperature, as evidenced by correlation coefficients of 98.91, 97.99, 99.03, 98.26 and 95.37% for the 5-, 10-, 20-, 50- and 100-cm soil depths, respectively. It was concluded that ANN modeling is a reliable method for predicting monthly mean soil temperature in regions of Turkey where soil temperature monitoring stations are not present.

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3