Wheat root dynamics as affected by landscape position

Author:

Block R M.A.,Van Rees K C.J.

Abstract

The effects of landscape position on root production and mortality were assessed in a 90-cm-deep soil profile at a shoulder and footslope landscape position seeded to spring wheat (Triticum aestivum L.). Root length was measured over eight sampling dates using a minirhizotron system, and soil water content and temperature were recorded at various depths at each landscape position. The shoulder position was drier than the footslope position in the upper 30 cm due to a greater frequency and duration of soil temperatures > 20°C, and at depth (> 75 cm). Mean root length was greatest at the footslope position and was concentrated in the upper 20 cm of the profile, while the shoulder position had the greatest root length at the 40- to 60-cm depth. Mean daily root production peaked at 5.0 to 6.0 m m-2 d-1 at the 43rd day after planting (DAP) for both landscape positions, which corresponded to the time of booting. Daily rates for root mortality ranged from 0.5 to 2.5 m m-2 d-1. Soil water content and daily root production at the 10-cm depth were positively correlated at both landscape positions. Information on landscape position differences in root productivity and mortality could help to improve placement of inorganic fertilizers, and estimation of below-ground carbon sequestration. Key words: Wheat, roots, minirhizotron, landscape position

Publisher

Canadian Science Publishing

Subject

Soil Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3