Review: The use of direct fed microbials to mitigate pathogens and enhance production in cattle

Author:

McAllister T. A.1,Beauchemin K. A.1,Alazzeh A. Y.1,Baah J.1,Teather R. M.1,Stanford K.2

Affiliation:

1. Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada T1J 4B1

2. Alberta Agriculture and Rural Development, Lethbridge, Alberta, Canada T1J 4V6 (e-mail: )

Abstract

McAllister, T. A., Beauchemin, K. A., Alazzeh, A. Y., Baah, J., Teather, R. M. and Stanford, K. 2011. Review: The use of direct fed microbials to mitigate pathogens and enhance production in cattle. Can. J. Anim. Sci. 91: 193–211. Direct-fed microbials (DFM) have been employed in ruminant production for over 30 yr. Originally, DFM were used primarily in young ruminants to accelerate establishment of the intestinal microflora involved in feed digestion and to promote gut health. Further advancements led to more sophisticated mixtures of DFM that are targeted at improving fiber digestion and preventing ruminal acidosis in mature cattle. Through these outcomes on fiber digestion/rumen health, second-generation DFM have also resulted in improvements in milk yield, growth and feed efficiency of cattle, but results have been inconsistent. More recently, there has been an emphasis on the development of DFM that exhibit activity in cattle against potentially zoonotic pathogens such as Escherichia coli O157:H7, Salmonella spp. and Staphylococcus aureus. Regulatory requirements have limited the microbial species within DFM products to organisms that are generally recognized as safe, such as lactic acid-producing bacteria (e.g., Lactobacillus and Enterococcus spp.), fungi (e.g., Aspergillus oryzae), or yeast (e.g., Saccharomyces cerevisiae). Direct-fed microbials of rumen origin, involving lactate-utilizing species (e.g., Megasphaera elsdenii, Selenomonas ruminantium, Propionibacterium spp.) and plant cell wall-degrading isolates of Butyrivibrio fibrisolvens have also been explored, but have not been commercially used. Development of DFM that are efficacious over a wide range of ruminant production systems remains challenging because[0] comprehensive knowledge of microbial ecology is lacking. Few studies have employed molecular techniques to study in detail the interaction of DFM with native microbial communities or the ruminant host. Advancements in the metagenomics of microbial communities and the genomics of microbial–host interactions may enable DFM to be formulated to improve production and promote health, responses that are presently often achieved through the use of antimicrobials in cattle.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Food Animals

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3