Grain protein as a post-harvest index of N sufficiency for hard red spring wheat in the semiarid prairies

Author:

Selles F.,Zentner R. P.

Abstract

Results from fertilizer trials with hard red spring wheat (Triticum aestivum L.) conducted throughout southwestern Saskatchewan under fallow and cereal stubble cropping conditions were used to determine if grain prote in concentration (GPC) could be used as an index of N sufficiency to the crop. Critical GPC were determined using the Cate-Nelson R2 procedure. Grain yield and protein concentration were negatively correlated under stubble and for fallow cropping when yields were below 2858 kg ha–1 ± 179, with grain protein decreasing by 15 mg g–1 for every 1000kg ha–1 yield increase. In these two groups of observations, water and N availability, N yield and grain produced per unit N available suggested that water availability was the dominant factor limiting grain yield. For the portion of fallow observations in which grain yields were higher than 2858 kg ha–1, water availability was not limiting, and N availability controlled grain yield and protein concentration. In this group, a GPC of 128 mg g–1 (range of 123 to 135 mg g–1) marked the transition between N deficiency and sufficiency. Under stubble cropping and for the lower-yielding portion of the fallow cropping system, where water stress was predominant, the Cate-Nelson analysis identified critical protein concentrations of 160 and 154 mg g–1, respectively. However, these critical concentrations separated populations into moderately and severely water-stressed crops, rather than providing a separation based on N availability. We concluded that GPC as a post-harvest index of N sufficiency must be used with caution in southwestern Saskatchewan. Grain protein concentration below the critical limit of 128 mg g–1 is a reliable indicator of low N sufficiency, but high grain protein does not necessarily imply N sufficiency because, frequently, grain yield and protein concentration are negatively correlated due to water stress. Key words: Yield, protein, N availability, critical levels, water stress

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3