Ammonia volatilization and soil nitrogen dynamics following fall application of pig slurry on canola crop residues

Author:

Rochette Philippe,Chantigny Martin H,Angers Denis A,Bertrand Normand,Côté Denis

Abstract

Land application of liquid manures is a major source of atmospheric ammonia. The presence of crop residues on the soil surface usually increases emissions by retarding slurry infiltration, whereas incorporation of slurry into soil reduces emissions. Our objective was to quantify the relative reduction in NH3 volatilization resulting from the soil incorporation of pig slurry (PS) applied on canola (Brassica napus) residues under fall conditions in Quebec, Canada. Pig slurry was applied at 7.4 L m–2 on six plots covered by canola crop residues. Slurry and residues were incorporated in the top 5 cm of soil (INCORP) in half of the plots, while the other half were left untouched (SURF). Ammonia volatilization was measured following application for 10 d using wind tunnels. Soil NH4+ and NO3 contents, pH, moisture and temperature were also monitored to explain variations in NH3 fluxes. Soil NH4+-N in the surface soil was lower than expected shortly after slurry application, maybe as a result of fixation by clays or interception by crop residues. The volatilization of NH3 was higher (P < 0.05) on SURF plots than on INCORP plots in 20 of the 26 measuring periods, with total NH3 losses being five times greater in the former. Cumulated emissions during the first 11 h accounted for the 60 and 53% of total NH3 emissions for the SURF and INCORP plots, respectively. Our results confirm that a large fraction of the NH3 volatilization from slurry application on canola residues can be greatly reduced if the slurry and crop residues are incorporated into the soil immediately after slurry application. Despite significant reduction (80%) of NH3 volatilization in INCORP compared with SURF plots, no difference was found in soil mineral N between treatments, suggesting that other processes such as N mineralization or denitrification were more active in INCORP plots. Key Words: Ammonium, nitrate, nitrogen cycle, organic amendments

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3