Accumulation and redistribution of residual chloride, nitrate, and soil test phosphorus in soil profiles amended with fresh and composted cattle manure containing straw or wood-chip bedding

Author:

Miller J. J.1,Beasley B. W.1,Drury C. F.2,Zebarth B. J.3

Affiliation:

1. Agriculture and Agri-Food Canada, 5403-1st Ave. South, Lethbridge, Alberta, Canada T1J 4B1

2. Agriculture and Agri-Food Canada, 2585 County Road 20, Harrow, Ontario, Canada N0R 1G0

3. Agriculture and Agri-Food Canada, PO Box 20280, Fredericton, New Brunswick, Canada E3B 4Z7

Abstract

Miller, J. J., Beasley, B. W., Drury, C. F. and Zebarth, B. J. 2011. Accumulation and redistribution of residual chloride, nitrate, and soil test phosphorus in soil profiles amended with fresh and composted cattle manure containing straw or wood-chip bedding. Can. J. Soil Sci. 91: 969–984. Limited research has compared the effect of fresh versus composted beef (Bos taurus) cattle feedlot manure containing straw or wood chips on accumulation and redistribution of residual chloride (Cl), NO3-N, and soil test P (STP) in soil profiles of the Great Plains region of North America. Barley (Hordeum vulgare L.) was grown (1999–2007) on an irrigated clay loam soil in southern Alberta where organic amendments and fertilizer were annually applied for 9 yr from 1998 to 2006. The field experiment was a factorial arrangement of two manure types (fresh versus composted feedlot manure), two bedding materials (straw versus wood-chips), and three application rates (13, 39, 77 Mg ha−1dry wt). There was also one inorganic (IN) fertilizer treatment and an unamended control. The soil profile (0–1.5 m) was sampled in the fall of 1999 to 2002, 2004, 2006, and 2007 and analyzed for residual soil NO3-N, Cl, and STP. Manure type had a significant (P≤0.05) effect on the accumulation of these chemicals, but there was an interaction with application rate (NO3-N), or with bedding and year (STP). The maximum accumulation of Cl after 9 yr was at the 0.6 to 0.9 m depth, but mean values at this depth were similar for the four organic amendments. The maximum accumulation of NO3-N after 9 yr (2007) was at the 0.3 to 0.6 m depth, and mean values at this depth were significantly greater by four- to sixfold for FM and CM with straw than wood-chips, which suggested greater N immobilization in soils with wood. Redistribution of Cl and NO3-N downward into the soil profile suggested a potential for leaching of these chemicals below the root zone. In contrast, soil test P did not accumulate below the 0.3 m depth, suggesting little potential for leaching. However, accumulation of soil test P at this depth was generally greater for the amendment treatments compared with inorganic fertilizer and was likely related to greater P applied in the amendments.

Publisher

Canadian Science Publishing

Subject

Soil Science

Reference52 articles.

1. Alberta Agriculture. 1995. Alberta fertilizer guide. Agdex 541-1, Alberta Agriculture, Edmonton, AB.

2. Nitrogen Mineralization from Organic Residues

3. Carbon and Nitrogen Dynamics During Incubation of Manured Soil

4. Canadian Council of Ministers of the Environment. 2002. Canadian environmental quality guidelines. Update 2002. CCME, Winnipeg, MB.

5. Nitrous Oxide Emission From Long-Term Manured Soils

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3