Non-growing season nitrous oxide fluxes from an agricultural soil as affected by application of liquid and composted swine manure

Author:

Kariyapperuma Kumudinie A.1,Furon Adriana1,Wagner-Riddle Claudia1

Affiliation:

1. School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1.

Abstract

Kariyapperuma, K. A., Furon, A. and Wagner-Riddle, C. 2012. Non-growing season nitrous oxide fluxes from an agricultural soil as affected by application of liquid and composted swine manure. Can. J. Soil Sci. 92: 315–327. Agricultural soils have been recognized as a significant source of anthropogenic nitrous oxide (N2O) emissions, an important greenhouse gas and contributor to stratospheric ozone destruction. Application of liquid swine manure (LSM) has been reported to increase direct N2O emissions from agricultural soils. Composting of LSM with straw under forced aeration has been suggested as a mitigation practice for emissions of N2O. In cold climates, up to 70% of total annual soil N2O emissions have been observed during winter and spring thaw. Non-growing season soil N2O emissions after field application of composted swine manure (CSM) versus LSM have not been directly compared in past studies. A 2-yr field experiment was conducted at the Arkell Research Station, Ontario, Canada, as a part of a larger study to evaluate composting as a mitigation strategy for greenhouse gases (GHGs). The objectives were to quantify and compare non-growing season N2O fluxes from agricultural soils after fall application of LSM and CSM. Nitrous oxide fluxes were measured using the flux-gradient method. Compared with LSM, CSM resulted in 57% reduction of soil N2O emissions during February to April in 2005, but emissions during the same period in 2006 were not affected by treatments. This effect was related to fall and winter weather conditions with the significant reduction occurring in the year when soil freezing was more pronounced. Compared with LSM, CSM resulted in a reduction of 37% (CO2-eq) of estimated N2O emissions per liter of treated manure and of 50% in the emission factor for the non-growing season.

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3