Chloride leaching in two Ontario soils: Measurement and prediction using HYDRUS-1D

Author:

Saso J. K.1,Parkin G. W.2,Drury C. F.3,Lauzon J. D.2,Reynolds W. D.3

Affiliation:

1. Department of Earth Sciences, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3

2. School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1

3. Greenhouse and Processing Crops Research Centre, Agriculture and Agri-Food Canada, Harrow, Ontario, Canada N0R 1G0

Abstract

Saso, J. K., Parkin, G. W., Drury, C. F., Lauzon, J. D. and Reynolds, W. D. 2012. Chloride leaching in two Ontario soils: Measurement and prediction using HYDRUS-1D. Can. J. Soil Sci. 92: 285–296. Deterministic numerical modelling can often be used to complement and extend field results, and to provide extra insight into the mechanisms of water and solute movement within the profile of agricultural soils. Chloride leaching and near-surface soil water content in a Guelph loam and a Maryhill loam cropped to corn (Zea mays L.) were measured over a 12-mo period (October 2007 to September 2008) and simulated using the HYDRUS-1D numerical model (version 4.12). Field measurements and prediction indicated that over 70% of the applied chloride (Cl) was lost to deep drainage (below 80 cm depth) during the winter months (November 2007 to April 2008) in both soils. Normalized root mean square error (NRMSE) values for HYDRUS-1D estimates of near-surface (0- to 30-cm depth interval) soil water content over the growing season (April to September, 2008) were 28% for Guelph loam and 42% for Maryhill loam. The NRMSE value for estimated versus measured Cl mass remaining in the soil profile (0–80 cm depth interval) over the winter months was 17% for both soils. It was concluded that the HYDRUS-1D model can provide reasonable predictions of near-surface soil water content and profile leaching losses of tracer solutes. Further work is required, however, to determine if the predictive ability of HYDRUS-1D might be improved by incorporating the effects of freeze-thaw cycles on soil hydraulic properties and solute leaching. Further study is also required to establish the model's ability to simulate the leaching behaviour of reactive solutes, such as nitrate, in agricultural soils.

Publisher

Canadian Science Publishing

Subject

Soil Science

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3