Cultivation effects on dispersible clay of soil aggregates

Author:

Fuller L. G.,Goh Tee Boon,Oscarson D. W.

Abstract

The objective of this study was to examine the effect of long-term cultivation on clay dispersibility of four aggregate size fractions (2.0–9.5 mm, 0.85–2.0 mm, 0.25–0.85 mm, and < 0.25 mm) obtained from a Chernozemic soil by comparing two cultivated sites with an adjacent native prairie site. Aggregate size fractions (ASF) were subjected to increasing levels of ultrasonic energy and the amount of clay dispersed at each energy level was determined. Organic carbon, hexose carbon, soluble hexose C, total clay, cation exchange capacity (CEC), and exchangeable cations were measured for each ASF. Clay contained within prairie aggregates was held much more strongly within the aggregate and therefore showed greater stability towards dispersion by ultrasonic vibration. More energy was required to disperse one-half of the ASF clay under prairie than under cultivated soils (228–425, and 95–229 kJ L−1 for prairie and cultivated macroaggregates, respectively; 370–433, and 249–334 kJ L−1 for prairie and cultivated microaggregates, respectively). Clay dispersibility was significantly correlated with organic C, hexose C, soluble hexose C, non-hexose C, CEC, and exchangeable Ca and Mg but was not correlated with total ASF clay. Long-term cultivation of this soil resulted in a decrease in the energy required to disperse an equivalent proportion of clay from aggregates relative to that of the grassland soil. Thus, cultivation of these soils has resulted in aggregates which are more susceptible to clay dispersion and therefore prone to water erosion and surface crusting. Key words: Clay dispersion, aggregation, carbohydrate

Publisher

Canadian Science Publishing

Subject

Soil Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3