Soil mineral nitrogen responses following liquid hog manure application to semiarid forage lands

Author:

Bork E. W.1,Lambert B. D.2,Banerjee S.3,Blonski L. J.4

Affiliation:

1. Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5

2. Alberta Environment and Sustainable Resource Development, Edmonton, Alberta, Canada T5K 2J6

3. Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada T6G 2H1

4. Range Branch, Ministry of Forests, Lands and Natural Resource Operations, Prince George, British Columbia, Canada V2N 4W5

Abstract

Bork, E. W., Lambert, B. D., Banerjee, S. and Blonski, L. J. 2013. Soil mineral nitrogen responses following liquid hog manure application to semiarid forage lands. Can. J. Soil Sci. 93: 369–378. Expansion of intensive livestock operations into semiarid regions lacking cultivated lands requires consideration of perennial forages for the efficient and sustainable disposal of manure. Little information exists on the nutrient dynamics associated with the application of manure to these areas. We examined soil mineral nitrogen (N) responses in four sites of the mixed-grass prairie, including two native grasslands and two introduced pastures, following different seasons (fall vs. spring), methods (dribble broadcast vs. coulter injected) and rates of liquid hog manure application (9.4, 18.8, 37.5, 75 and 150 kg ha−1available N). Soil mineral N, including NO3-N, NH4-N and total mineral N, were assessed after application but prior to plant growth in April 1999, and again one growing season later in April 2000. Initial soil N did not vary with season of application. Soil mineral N predictably increased with application rate, but only in the upper soil profile (0–20 cm). Decreases in soil mineral N after one growing season in all treatments highlighted the ability of these perennial forage lands to immobilize large amounts of soil N, a significant portion of which was related to N uptake by vegetation. Compared with broadcast application, manure injection led to 35% greater soil mineral N (both NO3and NH4) prior to plant growth, a response that persisted 1 yr later (+12%), thus demonstrating the N conserved benefits of manure incorporation. Overall, increases in soil mineral N within these forage lands appeared to be relatively short-term in nature, largely depleting over the course of a single growing season, suggesting one-time liquid hog manure application at low to moderate rates may be sustainable in this region of the mixed-grass prairie.

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3