Differentiation of potato ecosystems on the basis of relationships among physical, chemical and biological soil parameters

Author:

Boiteau G.1,Goyer C.1,Rees H. W.1,Zebarth B. J.1

Affiliation:

1. Agriculture and Agri-Food Canada, Potato Research Centre, 850 Lincoln Rd., P. O. Box 20280, Fredericton, New Brunswick, Canada E3B 4Z7

Abstract

Boiteau, G., Goyer, C., Rees, H. W. and Zebarth, B. J. 2014. Differentiation of potato ecosystems on the basis of relationships among physical, chemical and biological soil parameters. Can. J. Soil Sci. 94: 463–476. A study of soil physical, chemical and biological properties of five cultivated agro-ecosystems (two conventional potato, two organic potato and one cereal production systems) and two uncultivated agro-ecosystems (pasture and 20-yr abandoned potato field) was carried out at 21 field sites over 3 yr in New Brunswick, Canada. Twenty-four of the initial 42 variables chosen for their significant response to differences among farming systems were used in a principal component analysis to understand their relationships with the agro-ecosystems studied. The chemical, physical and biological soil properties considered contributed to a single dominant factor (PCI) of agricultural soil health representing soil organic matter dynamics. Conventional, uncertified organic and certified organic potato agro-ecosystems were lowest, intermediate and highest, respectively, on the PCI gradient. Conventional potato systems were characterized by high erosion, high soil bulk density, high soil test sulphur and phosphorus and high bacterial counts. Certified organic potato systems formed a separate group with the reference ecosystems (i.e., pasture and abandoned potato field under long-term rejuvenation). This group was characterized by high soil organic carbon, high soil aggregate stability, high soil water-holding capacity and high meso- and macro-fauna counts. The uncertified organic potato production system and organic barley system were characterized by average values, intermediate between conventional and certified organic potato systems. Results confirmed the strong negative impact of intensive cycles of conventional potato production on soil health. The clear separation observed between conventional, uncertified organic and organic potato ecosystems indicates that the positive impact of rotations and other management practices must be sustained over long periods for full rehabilitation of soils previously under intensive potato production. However, results also revealed that fields under organic certified potato production were retaining the properties of undisturbed reference sites such as pastures and abandoned potato fields under long-term rejuvenation.

Publisher

Canadian Science Publishing

Subject

Soil Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3