Impacts of 48 years of consistent cropping, fertilization and land management on the physical quality of a clay loam soil

Author:

Reynolds W. D.1,Drury C. F.1,Yang X. M.1,Tan C. S.1,Yang J. Y.1

Affiliation:

1. Greenhouse and Processing Crops Research Centre, Agriculture and Agri-Food Canada, Harrow, Ontario, Canada N0R 1G0

Abstract

Reynolds, W. D., Drury, C. F., Yang, X. M., Tan, C. S. and Yang, J. Y. 2014. Impacts of 48 years of consistent cropping, fertilization and land management on the physical quality of a clay loam soil. Can. J. Soil Sci. 94: 403–419. Soil physical quality (SPQ) is often ignored or under-monitored in long-term field studies designed to determine the economic and environmental sustainability of agricultural practices. Accordingly, a suite of complementary soil physical and hydraulic parameters was measured using intact core samples to determine the SPQ of a Brookston clay loam under a long-term (48 yr) cropping, fertilization and land management study at Woodslee, Ontario. The SPQ under virgin woodlot, fertilized monoculture sod and unfertilized monoculture sod treatments was similar, with optimal SPQ occurring in the top 10–20 cm, but severely suboptimal SPQ occurring below 30 cm because bulk density (BD), relative field capacity (RFC) and saturated hydraulic conductivity (KS) were excessive, and because organic carbon (OC), air capacity (AC) and plant-available water capacity (PAWC) were critically low. The SPQ for fertilized and unfertilized monoculture corn under fall moldboard plow tillage was similar and substantially suboptimal throughout the top 40–50 cm due to high or excessive BD and RFC, critically low OC, low or critically low AC and PAWC, and KSthat varied erratically from excessive to critically low. The SPQ under fertilized and unfertilized corn–oat–alfalfa–alfalfa rotations (corn and second-year alfalfa fall plowed) was similar and largely non-optimal below 10 cm, but largely optimal in the top 10 cm due to the ameliorating effects of numerous biopores and crop roots. A bimodal soil water release function fitted to release curve data showed that PAWC was determined by soil matrix porosity (PM), and AC was determined by soil structure porosity (PS). Strong inverse linear correlations between BD vs. PM, BD vs. PSand BD vs. OC provided site-specific estimates of optimal ranges and critical limits for PAWC, AC and OC, respectively. Although SPQ changed substantially among treatments, the changes did not extend below 30-to 40-cm depth, and were largely unaffected by long-term annual fertilization. The SPQ below 30- to 40-cm depth was similarly poor across all treatments, and is likely an inherent characteristic of the soil.

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3