Soil properties following long-term application of stockpiled feedlot manure containing straw or wood-chip bedding under barley silage production

Author:

Miller J. J.1,Beasley B. W.1,Drury C. F.2,Hao X.1,Larney F. J.1

Affiliation:

1. Agriculture and Agri-Food Canada, 5403-1st Ave. South, Lethbridge, Alberta, Canada T1J 4B1

2. Agriculture and Agri-Food Canada, 2585 County Road 20, Harrow, Ontario, Canada NOR 1GO

Abstract

Miller, J. J., Beasley, B. W., Drury, C. F., Hao, X. and Larney, F. J. 2014. Soil properties following long-term application of stockpiled feedlot manure containing straw or wood-chip bedding under barley silage production. Can. J. Soil Sci. 94: 389–402. The influence of long-term land application of stockpiled feedlot manure (SM) containing either wood-chip (SM-WD) or straw (SM-ST) bedding on soil properties during the barley (Hordeum vulgare L.) silage growing season is unknown. The main objective of our study was determine the effect of bedding material in stockpiled manure (i.e., SM-WD vs. SM-ST) on certain soil properties. A secondary objective was to determine if organic amendments affected certain soil properties compared with unamended soil. Stockpiled feedlot manure with SM-WD or SM-ST bedding at 77 Mg (dry wt) ha−1 yr−1 was annually applied for 13 to 14 yr to a clay loam soil in a replicated field experiment in southern Alberta. There was also an unamended control. Soil properties were measured every 2 wk during the 2011 and 2012 growing season. Properties included water-filled pore space (WFPS), total organic C and total N, NH4-N and NO3-N, water-soluble non-purgeable organic C (NPOC), water-soluble total N (WSTN), denitrification (acetylene inhibition method), and CO2 flux. The most consistent and significant (P≤0.05) bedding effects on soil properties in both years occurred for total organic C, C:N ratio, and WSTN. Total organic C and C:N ratio were generally greater for SM-WD than SM-ST, and the reverse trend occurred for WSTN. Bedding effects on other soil properties (WFPS, NH4-N, NO3-N, NPOC) occurred in 2012, but not in 2011. Total N, daily denitrification, and daily CO2 flux were generally unaffected by bedding material. Mean daily denitrification fluxes ranged from 0.9 to 1078 g N2O-N ha−1 d−1 for SM-ST, 0.8 to 326 g N2O-N ha−1 d−1 for SM-WD, and 0.6 to 250 g N2O-N ha−1 d−1 for the CON. Mean daily CO2 fluxes ranged from 5.3 to 43.4 kg CO2-C ha−1 d−1 for SM-WD, 5.5 to 26.0 kg CO2-C ha−1 d−1 for SM-ST, and from 0.5 to 6.8 kg CO2-C ha−1 d−1 for the CON. The findings from our study suggest that bedding material in feedlot manure may be a possible method to manage certain soil properties.

Publisher

Canadian Science Publishing

Subject

Soil Science

Reference56 articles.

1. Allison, F. E. and Anderson, M. S. 1951. The use of sawdust as mulches and soil improvement. USDA, Circular No. 891, Washington, DC.

2. Allison, F. E. 1965. Decomposition of wood and bark sawdusts in soil, nitrogen requirements, and effects on plants. USDA-ARS Tech. Bull. No. 1332. Washington, DC.

3. Annual denitrification rates in agricultural and forest soils: a review

4. Effect of Douglas-Fir Sawdust Mulches and Incorporations on Soil Microbial Activities and Plant Growth

5. Denitrification in soil. II. Factors affecting denitrification

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3